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Abstract 

In this paper, the Exp-function method, with the aid of a symbolic computation 

system such as Maple, is applied to the (2 + 1)-dimensional Calogero 

Bogoyavlanskii Schiff equation. Exact and explicit generalized solitary solutions 

are obtained in more general forms. The free parameters can be determined by 

initial or boundary conditions. The method is straightforward and concise, and its 

applications are promising. It is shown that the Exp-function method, with the 

help of symbolic computation, provides a very effective and powerful 

mathematical tool for solving Calogero Bogoyavlanskii Schiff equation. 

Keywords: Exp-function method; Calogero Bogoyavlanskii Schiff equation; 

partial differential equation. 

1 Introduction 

The investigation of exact solutions of nonlinear equations plays an important role 

in the study of nonlinear physical phenomena. In recent years, several powerful 

methods have been proposed to obtain approximate solution of nonlinear partial 

differential equations, such as the tanh method [1-2], sine–cosine method [3], 

homotopy perturbation method [4-5], variational iteration method [6-7], Adomian 

decomposition method [8], and many others. Most recently, a novel approach 

called Exp-function method [9-13] has been developed to obtain solitary solutions 

and periodic solutions of various nonlinear equations. The solution procedure of 
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this method, by the help of Matlab, Maple or any mathematical packages, is of 

utter simplicity.  

In this paper Exp-function method has been applied to obtain the exact solution of 

the Calogero Bogoyavlanskii Schiff equation (CBS equation). This equation has 

the following form; 

      4 2 0.xt xxxz x xz xx zu u u u u u                                                  (1) 

The CBS equation was first constructed by Bogoyavlanskii and Schiff in different 

ways. Bogoyavlanskii used the modified Lax formalism, where as schiff derived 

the same equation by reducing the Self-dual-yang-mills equation. The equation is 

used to describe the interaction of a Riemann wave propagating along the y-axis 

with a long wave along the x-axis. Wazwaz applied tanh-coth method and 

Hirota’s bilinear method to the CBS equation [14, 15]. 

 

2 The Exp-function method 
 

To illustrated the Exp-function method let’s consider a general nonlinear PDE, in 

the following form 

          ( , , , , , ) 0.t x xx ttp u u u u u                                                           (2) 

Using the transformation 

           ,kx wt                                                                                (3) 

where k and w are constants we can rewrite Eq. (2) as the following nonlinear 

ODE: 

            ( , , , , ) 0,G u u u u                                                               (4) 

where the superscripts denotes the derivatives with respect to  . 

According to Exp-function method, we assume that the solution can be expressed 

in the following form, [9]. 

              
exp( ) exp( )

( ) ,
exp( ) exp( )

c d

p q

a c a d
u

b p b q

 


 




  


  
                           (5) 

where , ,c d p  and q  are positive integers which could be freely chosen, ma for 

,...,m d c  and nb , for ,...,n q p are unknown constants and should be 

determined. To determine the values of c and p, we balance the linear terms of the 

highest order in Eq. (4) with the highest order nonlinear terms. 

Similarly for determining the values of d and q, we balance the linear terms of the 

lowest order in Eq. (4) with the lowest order nonlinear terms. 

3 Solution of the equal-width equation by Exp-function method 

Using the transformation  

         ( ),u U        ,kx wt sz     

where ,k w  and s  are constants to be determined later, Eq.(1) converts to an 

ordinary differential equation, as follows: 

        2 (4) 6 0.wU k sU ksU U                                                    (6)       
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Where the super scripts denotes the differential with respect to  . By integrating 

the last equations we find: 

        
22 3 0.wU k sU ksU                                                         (7) 

 We assume that the solution can be expressed in the form (5). In order to 

determine c and p, we balance the linear term of the highest order in Eq. (1) with 

the highest order nonlinear term. By simple calculation, we derive to 

          1

2

exp[(7 ) ]
,

exp[8 ]

c p c
U

c p





 
 


                                                (8) 

and 

          2 3 3

4 4

exp[(2 2 ) ] exp[(6 2 ) ]
.

exp[4 ] exp[8 ]

c p c c p c
U

c p c p

 

 

   
  

 
     (9)     

By balancing the highest order of Exp-function in Eqs. (8) and (9), we have: 

         7 2 6 ,c p c p                                                                       (10) 

which leads to the following result: 

          .p c                                                                                      (11) 

The values of d and q can be determined in a similar way. We balance the linear 

term of the lowest order in Eq. (6) 

           1

2

exp[ (7 ) ]
,

exp[ 8 ]

d q d
U

d q





  
 

 
                                              (12) 

with the nonlinear term 

         2 3 3

4 4

exp[ (2 2 ) ] exp[ (6 2 ) ]
.

exp[ 4 ] exp[ 8 ]

d q d d q c
U

d q d q

 

 

     
  

   
   (13) 

ic 's and id 's are identified symbolically, so that for the sake of simplicity of the 

form of equations (8), (9), (12) and (13). By balancing the lowest order of Exp-

function in Eqs. (12) and (13), we derive; 

           (7 ) (2 6 ),q d d q                                                                                                         

which leads to the following result: 

               .d q                                                                                    (14)   

It is possible to choose the values of c and d, but we will illustrate that the final 

solution does not strongly depend upon the choice of values of c and d. 

 

3.1 The choice of p = c = 1 and q = d = 1 

For the sake of simplicity, we choose p = c = 1 and q = d = 1, the trials function, 

Eq. (5) converts to as: 

                1 0 1

1 0 1

exp( ) exp( )
( ) .

exp( ) exp( )

a a a
U

b b b

 


 




  


  
                                      (15) 

In case 1 0b   Eq. (15) can be simplified as 

               1 0 1

0 1

exp( ) exp( )
( ) .

exp( ) exp( )

a a a
U

b b

 


 




  


  
                                       (16)                                                                           

  Substituting Eq. (16) into Eq. (7), by the help of the symbolic computation in the 

Maple package, leads to 
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3 2 1 0

1 2 3

1
[ exp(3 ) exp(2 ) exp( )

    exp( ) exp( 2 ) exp( 3 )] 0,

C C C C
A

C C C

  

    

  

      

 

Where A  and iC are constants. 

Equating the coefficients of exp( )n  in each term with zero yield to a set of 

algebraic equations for 1 0 1 0 1, , , , , ,a a a b b w s  , and k .  

       

4 3 2 1

0

4 3 2 1

0, 0, 0, 0,

0,

0, 0, 0, 0.

C C C C

C

C C C C   

    





   

                                                                                                      

The solution of this system of algebraic equations are as follows, 

      

1 1 0 1 1 0 1 1

2

1 1 1 1 1 1

2

1 1

, 0, , 0, ,

( )
, .

4 4

a a a a a b b b

a a b s a a b
w k

b b

 

   

 

    

  
   

                                      (17) 

Where 1 1, ,s a b   and 1a are free parameters. Substituting Eq. (17) into Eq. (16), we 

obtain the following exact solution 

1 1
1

1

exp( ) exp( )
( , , ) .

exp( ) exp( )

a a
u x z t

b

 

 




 


 
                                                       (18)   

Where 

           
2

1 1 1 1 1 1

2

1 1

( )
.

4 4

a a b a a b s
x t sz

b b
    

 

  
     

If we set 1 1b    and 1 1,a a  Eq. (18) reduces to 

               2

1 1

1
( , , ) coth( ) ,

2
u x z t a x a st sz                                                 (19) 

For 1 1b   and 1 1,a a   we get: 

              2

1 1

1
( , , ) tanh( ),

2
u x z t a x a st sz                                                  (20) 

where in Eqs. (19) and (20),  s  and 1a are free parameters. 

 

3.2 The choice of p = c =2 and q = d = 1 

     If we choose p = c =2 and q = d = 1, Eq. (5) takes the following form: 
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            2 1 0 1

1 0 1

exp(2 ) exp( ) exp( )
( ) .

exp(2 ) exp( ) exp( )

a a a a
U

b b b

  


  




   


    
                        (21) 

Proceeding in a similar way as illustrated in 3.1, we can identify parameters, 

2 1 0 1 1 0 1, , , , , , , ,a a a a b b b w s  ,  and k in Eq. (21) as follows  

Case1: 

     

0 0
2 1 0 0 0 0

0

2

1 1 1

4
, 0, , , ,

4 , 0, , 0, 0.

kb a
a a a a b b s s

b

w k s b k k a b 


    


      

                                   (22) 

Case2: 

     

1 1
2 1 0 0 0

1

2

1 1 1 1 1

6
, 0, , 0, ,

9 , 0, , , .

a kb
a a a a b s s

b

w k s b k k a a b b

 



   


    


      

                               (23) 

And 

Case3:    

   

1 0 1 1 1 1
1 1 0 1 2

1 0 1

21
1 1 0 0 1

0

4 4
, , , ,

, , , , 4 , .

a b kb a kb a
a a a a a

b b b

b
b b b b b s s w k s k k

b

    
 

 


 

 
    



       


           (24) 

Substituting Eq. (22) into Eq. (21), we obtain following exact solution 

     

20 0
0 2

0 0
2 2 2

0 0 0

4
exp2( 4 )

4 exp2( 4 )
( , , )

exp2( 4 ) exp2( 4 )

kb a
kx k st sz a

b ak kx k st sz
u x z t

kx k st sz b kx k st sz b b


  

 
  

     
               

(25)                                                        

If we set 0 1b   , Eq. (25) reduces to 

       0( , , ) 2 exp( )sech( ) ,u x z t a k                                                 (26) 

For 0 1b    we get: 

      0( , , ) 2 exp( )csch( ) ,u x z t a k                                                (27) 

Where 

            
24 .kx k st sz     

If we set 0 0 11, 0, 2b a k k   , and 1 2m s , Eq. (25) reduces to 

            
2

1 1 1 1 1
2 2

1 1 1 1

2 exp( )
( , , ) .

1 exp( )

k k x m z k m t
u x z t

k x m z k m t

 


  
                                                 

This result is exactly the same as that obtained by wazwaz [15]. 
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By Eq. (23), we obtain the following solution: 

1 1
1

1 1
3

1 1 1

6
exp2( ) exp( )

6 exp2( )
( , , ) ,

exp2( ) exp( ) exp2( ) exp( )

a kb
a

b ak
u x z t

b b b

 


   

 


 

  


 

  
   

                        

(28) 

where 

            29 .kx k st sz     

And from Eq. (24), we get 

1 01 1 1 1
1

1 0 1
4

1
0 1

0

1

01

11
0 1

0

4 4
exp(2 ) exp( ) exp( )

( , , )

exp(2 ) exp( ) exp( )

exp(2 ) exp( )

4 .

exp(2 ) exp( ) exp( )

a bkb a kb a
a

b b b
u x z t

b
b b

b

b

ba
k

bb
b b

b

  

  

 

  

   


 











 
   



   



 

   

   (29) 

Where 

            
24 .kx k st sz     

 

                   

3.3 The choice of p = c = 1 and q = d = 2 

      As mentioned earlier the values of c and d can be freely chosen, now we set p 

= c = 1 and q = d = 2, so Eq. (5) turns to the following form; 

       1 0 1 2

0 1 2

exp( ) exp( ) exp( 2 )
( ) .

exp( ) exp( ) exp( 2 )

a a a a
U

b b b

  


  
 

 

    


    
                       (30) 

By the same manipulation as illustrated earlier, we obtain 

 Case1: 

     

1 1 0 1 2 2 0 1 2 2

2

2 1 2 2 1 2

2 2

2 2

, 0, 0, , 0, 0, ,

( )
, , .

4 6

a a a a a a b b b b

a a b s a a b
w k s s

b b

     

   

 

       

    

   


           (31) 

We, therefore, obtain the solution of Eq. (1) which reads 

              1 2
5

2

exp( ) exp( 2 )
( , , ) .

exp( ) exp( 2 )

a a
u x z t

b

 

 




 


 
                                     (32) 

Where 

            
2

2 1 2 2 1 2

2 2

2 2

( )
.

6 4

a ab a ab s
x t sz

b b
    

 

   
    

 

Case2: 
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1 2 2 1 2
1 1 0 1 2 2 0 1 1 2 2

1 2 1

2

2 1 2 2 1 2

2 2

2 2

, , , , , , ,

( )
, , .

4 4

a b a b b
a a a a a a b b b b b

b b b

a a b s a a b
w k s s

b b

   
      

  

   

 


      




       


  (33) 

The solution of Eq. (1) is  

1 2 2 1
1 2

1 2
6

2
1 2

1

exp( ) exp( ) exp( 2 )

( , , ) .

exp( ) exp( ) exp( 2 )

a b a b
a a

b b
u x z t

b
b b

b

  

  

  


 


 



    



    

              (34) 

Where  

          
2

2 1 2 2 1 2

2 2

2 2

( )
.

4 4

a ab a ab s
x t sz

b b
    

 

   
           

Case3:    

   

1 1 0 1 2 0 1 1 2

2

1 1 1 1 1 1

2 2

1 1

, 0, 0, 0, 0, , 0,

( )
, , .

4 4

a a a a a b b b b

a a b s a a b
w k s s

b b

    

   

 

       

    

   


                (35) 

By Eq. (35), we obtain the following solution; 

    1 1
7

1

exp( ) exp( )
( , , ) .

exp( ) exp( )

a a
u x z t

b

 

 




 


 
                                                (36) 

Where  

  
2

1 1 1 1 1 1

2

1 1

( )
.

4 4

a ab a ab s
x t sz

b b
    

 

  
     

 Which  7 ( , , )u x z t  is the same as 1( , , )u x z t . 

 

3.4 The choice of  p = c = 2 and q = d = 2 

Under such case, the trial function (5) can be expressed as follows 

       2 1 0 1 2

1 0 1 2

exp(2 ) exp( ) exp( ) exp( 2 )
( ) .

exp(2 ) exp( ) exp( ) exp( 2 )

a a a a a
U

b b b b

   


   
 

 

     


     
      (37) 

Proceeding in a similar way as illustrated in 3.1, we can identify parameters, 

2 1 0 1 2 1 0 1 2, , , , , , , , , ,a a a a a b b b b w s     , and k in Eq. (37) as the following  

Case1: 

     

0 0
2 1 0 0 1 2 1 0 0 1 2

0

2

4
, 0, , 0, 0, 0, , 0, 0,

4 , , .

kb a
a a a a a a b b b b b

b

w k s k k s s

   


        


    

              

(38) 

  Substituting Eq. (38) into Eq. (37), we obtain following exact solution 
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0 0
0

0
8

0

4
exp(2 )

( , , ) .
exp(2 )

kb a
a

b
u x z t

b











                                                   (39) 

and 

            24 .kx k t sz     

Which is the same as 2 ( , , )u x z t . 

 

Case2: 

     

1 1
2 1 0 1 1 2 1 0

1

1 1
1 1 2

1

6
, 0, 0, , 0, 0, 0,

6
, 0, , , .

kb a
a a a a a a b b

b

kb a
b b b w k k s s

b

 
  



 
  




      




     


     (40) 

Inserting Eq. (40) into Eq. (37) yields the following generalized solution 

1 1
1

1
9

1

6
exp(2 ) exp( )

( , , ) .
exp(2 ) exp( )

kb a
a

b
u x z t

b

 

 

 







 


 

                                 (41) 

Where  

          29 .kx k t sz     

And that is the same as 3( , , )u x z t . 

 

Case3:    

   

1 01 1 1 1
2 1 0 1 1 2

1 0 1

21
1 0 0 1 1 2

0

4 4
, , , , 0,

, , , 0, 4 , , .

a bkb a kb a
a a a a a a

b b b

b
b b b b b b w k s k k s s

b

   
  

 


  

 
    



        


                                       

(42)            

Substituting Eq. (42) into Eq. (37) yields to 

1 01 1 1 1
1

1 0 1
10

1
0 1

0

4 4
exp(2 ) exp( ) exp( )

( , , ) .

exp(2 ) exp( ) exp( )

a bkb a kb a
a

b b b
u x z t

b
b b

b

  

  

   


 




 
   



   

                            

(43) 

Where  

  
24 .kx k t sz     

Which is the same as 4 ( , , )u x z t . 

 

Case4: 
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2 2
2 1 0 1 2 2

2

2

1 0 1 2 2

8
, 0, 0, 0, ,

0, 0, 0, , 16 , , .

kb a
a a a a a a

b

b b b b b w k s k k s s

 
  



  


    


        

                                               

(44) 

By means of Eqs. (37) and (44), we have 

2 2
2

2
11

2

2

2 2

8
exp(2 ) exp( 2 )

( , , )
exp(2 ) exp( 2 )

exp(2 )
               8 .

exp(2 ) exp( 2 )

kb a
a

b
u x z t

b

a
k

b b

 

 



 

 








 


 


 

 
 

               (45) 

Where  

          216 .kx k t sz     

If we set  
2

K
k   and 

2

S
s   , Eq. (45) will be the same as Eq. (25). 

Case5:    

   

1 2 2 2 2 1
2 1 0 1 2 2

2 1 2

22
1 0 1 1 2 2

1

6 6
, , 0, , ,

, 0, , , 9 , , .

kb a kb a a b
a a a a a a

b b b

b
b b b b b b w k s k k s s

b

     
  

  


   



 
    



        


                                      

(46)   

 By Eq. (46), we obtain the following solution: 

                       

12

1 2 2 2 2 1
2

2 1 2

2
1 2

1

2

2 1

22
1 2

1

( , , )

6 6
exp(2 ) exp( ) exp( ) exp( 2 )

exp(2 ) exp( ) exp( ) exp( 2 )

6
6 exp(2 ) exp( )

.

exp(2 ) exp( ) exp( ) exp( 2 )

u x z t

kb a kb a a b
a

b b b

b
b b

b

kb
k

a b

bb
b b

b

   

   

 

   

     


  


 





 


 





 
    

    



 

    

    (47) 

Where   
29 .kx k t sz     

4 Conclusions   

In this article, we have obtained the exact solution of CBS equation. The solution 

has been achieved by applying Exp-function method. We predict that these 

solutions will be of great importance for analyzing the nonlinear phenomena 

arising in applied physical sciences. The results show that Exp-function method is 

a powerful tool for obtaining solitary solution. It may be concluded that, the Exp-

function method can be easily extended to all kinds of nonlinear equations. The 
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advantage of this method over other methods is that we can obtain the exact 

solution by using a simple computer program. Applications for exp-function 

method are under study in our research group. The computations associated in this 

work were performed by using Maple 11. 
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