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Abstract 

Substantiation of the averaging method for differential equations with maxima is 
presented. Two theorems on substantiates for differential equations with maxima are 

established.  
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1 Introduction. Substantiates theorems 

In the papers [3], [5], [6], [10], the differential equations with maximums for the 

mathematical simulation of some systems with automatic regulation are presented. 

Application of the averaging method for differential equations with maximums has been 
studied extensively by many researchers (see [1], [2], [4], [9], [10] and the references 

therein). In the present paper two theorems on the justification of the averaging method 

for differential equations with maxima are established.  

The differential equation  

[ ( ) ( )]
( ) ( ( ) max ( ))

s g t t
x t f t x t x s




 
                                                   (1) 

with maxima is considered. Here 
nx R  is a phase vector,   is a small parameter, 

[0 ) n n nf R R R      is n  dimensional vector function, 0t    ( )g t  and ( )t  are 

known functions, 0 ( ) ( )g t t t    and  
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[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]
max ( ) max ( ) max ( )n

s g t t s g t t s g t t
x s x s x s

       
    

Here max i
i

x x      

Note that if ( ) ( )g t t t h     then (1) is a differential equation with constant delay and 

if ( ) ( )g t t   then (1) is a differential equation with variable delay. Let us consider the 

following averaged equation  

                         0

[ ( ) ( )]
( ) ( ) max ( )

s g t t
y t f y t y s




 
                                                  (2) 

 

for the equation (1). Here  

                        
0

0

1
( ) lim ( )

T

T
f x y f t x y dt

T
                                                      (3) 

 

Theorem 1.  In [0 )  nQ D D D R       the following conditions hold:   

1) ( )f t x y   is a continuous function on t  and  

( )f t x y M     (4) 

 

( ) ( ) [ ]f t x y f t x y x x y y                                 (5) 

 

2) ( )g t  and ( )t  are evenly continuous functions and  0 ( ) ( )g t t t   ;   

3) the limit (3) exists evenly with respect to x y ;   

4) the solution of the equation (2)  at  1(0 ]  0  (0)t y D D          together 

with its  neighbourhood belongs to D .   

Then for any 0  0L     there exists 
0

1( ) (0 ]L      such that the following 

estimate holds:  

                  ( ) ( )x t y t                                                                                   (6) 

where ( ) ( )x t y t  are solutions of systems (1) and (2) accordingly, (0) (0)x y D      

Now, we consider the following partially averaged equation  

                    
[ ( ) ( )]

( ) max ( )
s g t t

y F t y t y s



 

                                                           (7) 
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for the equation (1). Here  

( 1)
1

( ) ( ) ( )  [ ( 1) ) 0 1

i T

i

iT

F t y z F y z f t y z dt t iT i T i
T

  
                

  
    (8)  

 

T  is a constant. The step-averaging scheme of (7) for the system (1) will be used.  

Theorem 2. Let the conditions (1) and (2) of the theorem 1 is fulfilled and also:   

 solution of the equation (7) at 1(0 ]     0t   and (0)y D D   together 

with its  neighbourhood belongs to D .   

Then for any 0L  , there exist such 0C    and  
0

1( ) (0 ]L    that the 

following estimate is fulfilled:  

                    ( ) ( )x t y t C                                                                             (9) 

 

where ( ) ( )x t y t  are solutions of systems (1) and (7) accordingly, (0) (0)x y D      

2  Proofs of theorems 1 and 2 

First, we will give the proof of theorem 1. Using the integral equations for (1) and (2), we 

can write  

          ( ) ( )x t y t   

 

          
[ ( ) ( )] [ ( ) ( )]

0

( ( ) max ( )) ( ( ) max ( ))

t

s g s g
f x x s f y y s d

     
     

   
      

 

0 0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))

t

s g s g
f y y s f y y s d I I

     
    

   

        
     (10) 

 

Note that:  

          
[0 ]

( ) max ( ) ( )
s t

t x s y s
 

   

is the uniform metric. Then, using this notation and (10), we get:  

           
[ ( ) ( )] [ ( ) ( )]

0

( ) ( ) max ( ) max ( )

t

s g s g
I x y x s y s ds
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0

2 ( )

t

d                                                                                             (11) 

 

We consider 
1 0 1  it i i m m L          and 

1
1

1

0

[0 ] [ ]
m

i i

i

L t t








   .  

Let 1[ )k kt t t   . Then, using the additive property of the integral, we get:  

11
0 0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))
i

i

tk

s g s g
i t

I f y y s f y y s d
     

    


   


     
  

   

 

1
0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))

k

t k

i k
s g s g

it

f y y s f y y s d I I
     

    


   


        
  

    (12) 

 

Let us estimate kI  and iI  for all i , using the triangle inequality, we obtain:  

1

0

[ ( ) ( )] [ ( ) ( )]
( ( ) max ( )) ( ( ) max ( ))

i

i i i i

i

t

i i i
s g t t s g t t

t

I f y t y s f y t y s d
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( ( ) max ( )) ( ( ) max ( ))

i

i i

i

t

i
s g s g t t

t

f y y s f y t y s d
   

    


   
       

 

1

0 0 0 00

[ ( ) ( )] [ ( ) ( )]
( ( ) max ( )) ( ( ) max ( ))

i

i i

i

t

i i i i
s g t t s g

t

f y t y s f y y s d J J J
   

  


   
          (13) 

 

From (2) and estimate (13) and (1), (2) assumptions of the theorem 1, we get:  

1

[ ( ) ( )] [ ( ) ( )]
( ) ( ) max ( ) max ( )

i

i i

i

t

i i
s g s g t t

t

J y y t y s y s d
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0
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t

s g x x
t t

f y x y s dx Mmax{ g } d
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2 ( ) ( )

2
M max{ g }    

 
      
 

                                           (14) 

where ( )   is a continuity modulus [11] of the function ( )t  on the interval [0 ) , 

and ( ) sup ( ) ( )
t t

t t   
   

      .  

Using the properties of the continuity modulus of the paper [8], we get:  

         
1

0 2

k

i

i

L L L
J ML max g

m m m
   

  





     
          

     
  

 

         
2

ML L
max L g L MLmax L g L

m


      

 
         

 
  (15) 

Similarly to the way the estimate (15) was obtained, it can be proved that  

    
1

00

0

1

2

k

i

i

L
J ML max L g L

m m
    





  
        

  
          (16) 

 

From assumption (3) of the theorem 1 it follows that there exists a decreasing 

function ( ) 0
t

t

  such that  

0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))
i

i i i i

t

i i
s g t t s g t t

f y t y s f y t y s d
 

  
   

     
    

 

           ( ) ( )i
i i it t


   


   

 

Therefore, for any 1  exists 0 1( ) 0   , such that for any 0 1( )   , the 

following inequality holds:  

1

0 0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))
i

i i i i

t

i i i
s g t t s g t t

J f y t y s f y t y s d
 

  


   
      

 

0

1
[ ( ) ( )] [ ( ) ( )]

0

( ( ) max ( )) ( ( ) max ( )) 2
i

i i i i

t

i i
s g t t s g t t

f y t y s f y t y s d
 

   
   

             (17) 

 

From (4) it follows that  
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2

k

ML
I

m
                                                                                 (18) 

 

Using estimates (14)-(18), we get  

    0 2
1

2

ML L
I max L g L

m
    
 

      
 

 

 

     12 2 ( ) ( )MLmax L g L m m                             (19) 

 

So, for [0 ]t   , we can write  

0 0

( ) ( ) 2 ( ) ( ) 2 ( ) ( )

t

x t y t s ds m s ds m



                           (20) 

 

Then, using the definition of ( )  , we get  

0
0

( ) max ( ) ( ) 2 ( ) ( )
s

x s y s s ds m




     

 
                    (21) 

 

Applying the Gronwall-Bellman lemma, we get  

2 2( ) ( ) ( )t Lt m e m e             

 

Note that by appropriate choice of sufficiently large m  and sufficiently small    the 

value ( )m  , can be made as small as possible.  

Theorem 1 is proved.  

Second, we will give the proof of theorem 2. It is similarly to proof of the theorem 1, only 

in the estimate (14) 1i it t T    , and   is not depend on  .  

So, from (14) it follows that  

11

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))
i

i

tk

s g s g
i t

f y y s F y y s d
     

   


   


      

 

               ( ) ( )
2

M max{ g }   
 

      
 

                                           (22) 



 

 

Iranian Journal of Optimization, Vol 2, Issue 1, Winter 2010                                    106            

 

Similarly to the way the estimate (22) was obtained, it can be proved that  

11
0

[ ( ) ( )] [ ( ) ( )]
0

( ( ) max ( )) ( ( ) max ( ))
i

i i

i

tk

i
s g s g t t

i t

f y y s F y t y s d
   

 


   


     

 

                   
1

2

L
ML max L g L

m m
    

  
        

  
                        (23) 

 

Using (8), we get  

1

[ ( ) ( )] [ ( ) ( )]
( ( ) max ( )) ( ( ) max ( )) 0

i

i i i i

i

t

i i
s g t t s g t t

t

f y t y s F y t y s d
 

 


   

      
    

[ ( ) ( )] [ ( ) ( )]
( ( ) max ( )) ( ( ) max ( ))

k

s g s g
t

f y y s F y y s d



     
    

   

    
    

2MT  

From (23), (24) the inequality (9) holds. Theorem 2 is proved.  

3  Conclusion  

The theoretical results concerning of the averaging method for the differential 

equation with maxima are presented. We have used two averaging schemes: 

complete averaging scheme and step-averaging scheme. For the second scheme 

the estimation of proximity of solutions are given and averaged systems are more 

exact.  

References  

[1] Angelov V.G., Bainov D.D., On the functional differential equations with 

"maximums", Appl. Anal., 16, 187-194, 1983.  

[2] Bainov D.D., Milusheva S.D., Justification of the averaging method for 

functional differential equations with maximums, Hardonic J., 6,1034-1039, 1983.  

[3] Bainov D.D., Voulov H.D., Differential Equation with Maxima. Stability of 

Solutions, Sofia, 1992.  

[4] Bainov D.D., Zahariev A.I., Oscillating and asymptotic properties of a class of 

functional differential equations with maxima, Czechoslovak Math. J., 34 (109), 

247-251, 1984.  

[5] Magomedov A.R., Some questions of differential-equations with maximums, 

Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tek. i Mat. Nauk, 1, 104-108, 1977.  



 

 

Iranian Journal of Optimization, Vol 2, Issue 1, Winter 2010                                    107            

[6] Milusheva S., Bainov D.D., Justification of the averaging method for 

multipoint boundary value problems for a class of functional differential equations 

with maximums. Collect. Math., 37, 297-304, 1986.  

[7] Mishev D.P., Oscillatory properties of the solutions of hyperbolic differential 

equations with "maximums", Hiroshima Math. J., 16, 77-83, 1986.  

[8] Plotnikov V.A. The averaging method in control problems, Lybid, Kiev-

Odessa, 1992. 

[9] Plotnokov V.A., Kichmarenko O.D., Averaging of differential equations with 

maxima, Vestnik Chernovitskogo universiteta, 150, 78-82, 2002.  

[10] Popov E.P., Automatic Regulation and Control, Nauka, Moscow, 1966. 

[11] Sendov B., Popov V., The averaged smoothness moduli, Mir, Moscow, 1988.  


