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Abstract 

In this paper, we explore a nonlinear mathematical model to study the spread of 

asthma due to inhaled pollutants from industry as well as tobacco smoke from 

smokers in a variable size population. The model is analyzed using stability theory 

of differential equations and computer simulation. It is shown that with an 

increase in the level of air pollutants concentration, the asthmatic (diseased) 

population increases. It is also shown that along with pollutants present in the 

environment, smoking (active or passive) also helps in the spread of asthma. 

Moreover, with the increase in the rate of interaction between susceptibles and 

smokers, the persistence of the spread of asthma is higher. A numerical study of 

the model is also performed to see the role of certain key parameters on the spread 

of asthma and to support the analytical results. 

Keywords: pollutants, smokers, asthma, stability, Liapunov function, computer 

simulation 

 

1 Introduction 

Asthma is a chronic disease of the respiratory system  in which the airways 

occasionally constricts, becomes inflamed and is lined with excessive amount of 

mucus, often in response to one  or more triggers as allergens, pollutants released  

into  the  environment  and  workplace  exposures.  In   susceptible individuals, this 

inflammation causes recurrent episodes of wheezing, breathlessness, chest 
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tightness and coughing, particularly at night or the early morning. During very 

severe attacks, asthma sufferers can turn blue due to lack of oxygen and can 

experience chest pain or even loss of consciousness. 

Studies reveal that not only air pollutants like di-isocynates, hexachloroplatinates, 

etc., can cause asthma but also tobacco smoke causes asthma [4,7]. It is well 

known that smoking can harm our body in many ways but it is very harmful to the 

lungs. It leads to decreased lung function making lungs susceptible to asthma 

triggers. Cigarette smoke contains high concentration of irritants such as 

formaldehyde, acrolein, ammonia and nitrogen oxides. Pulmonary damage results 

not only from mainstream smoke (that inhaled by the smoker) but also from 

sidestream smoke, the visible smoke that comes from the tip of a burning cigarette 

and is inhaled involuntarily by nonsmokers who are nearby. Therefore, when a 

person inhales tobacco smoke whether for personal smoking or passive smoke, 

these irritating substances can set off an asthma attack [8]. The environmental 

tobacco smoke (ETS) can both induce and exacerbate asthma. The largest impact 

of exposure to ETS can be seen in children and their respiratory system. Children 

of all ages who live in a home with smokers are 63% more likely to have asthma 

because their lungs are still developing [6,8]. About 15 million children are 

regularly exposed to secondhand smoke and upto 1 million children with asthma 

become more severe after exposure to secondhand smoke [6]. Also the pollutants 

emitted in the environment like particulates of vanadium and nickel from oil 

refineries and power stations, cocktails of heavy metals from SLF burning cement, 

brick and lime works and dust from open cast coal mining and coal fired cement 

and other works play significant roles in the cause of asthma [2, 3, 7, 9].  

Thus, due to continuous exposure to air pollutants, a susceptible population 

becomes asthmatic. The literature on the mathematical modeling of the study of 

asthma is scant. For example, Ghosh [4] presented a model to study the effect of 

environmental pollutants on the spread of asthma. It is noted that continuous 

exposure to smoking plays a very significant role in the development and spread of 

asthma. This very important aspect, by considering a separate class of smokers, has 

been accounted for in our model.  

In view of the above, we have proposed a nonlinear mathematical model to study 

the effect of environmental pollutants on the spread of asthma in presence of 

smokers that are mainly responsible to pollute the otherwise pollution free 

environment. The model is analyzed using stability theory of nonlinear differential 

equations. A numerical study is also performed to see the role of key parameters 

on the spread of asthma. 

2 Mathematical Model 

For model building, we have subdivided the total population N(t) into four 

compartments namely, susceptibles S(t), exposed E(t), diseased class (asthmatic 

class) I(t)  and smokers class C(t),  P(t)  is the cumulative concentration of  

pollutants present in the environment. It is assumed that the susceptible population 

becomes asthmatic by continuous exposure to air pollutants such as di-isocyanates, 
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hexachloroplatinates, etc. and by interaction with smokers in two steps. First it 

moves from the susceptible class to exposed class with transmission coefficient 

γ and β  due to interaction of susceptibles with pollutants present in the 

environment and smokers respectively. Further, from exposed class, it moves to 

diseased class due to continuous exposure with pollutants and smokers with 

transmission coefficient λ  and λ  respectively. 

In view of the above assumptions and considerations, and by using simple mass 

action interaction, a mathematical model is proposed as follows:  

                               SCβSPγSμ
dt

dS
Λ                             (1)                               

                               EμECλEPλSCβSPγ
dt

dE
            (2)                       

                              IμIαCPθCθECλEPλ
dt

dI
      (3) 

                              CμCθCPθCθQ
dt

dC
                     (4) 

                             qCPτNA
dt

dP
 )(                                        (5) 

with         S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, C(0) = C0 > 0 P(0) = P0 > 0.  

Since N(t) = S(t) + E(t) + I(t) + C(t), therefore, we can write the equation 

governing the total population N(t) as,  

                    CθIαNμQ
dt

dN
 Λ                            (6) 

Here Λ  is the constant recruitment rate of susceptibles in the population under 

consideration, μ  is the natural mortality rate taken to be same in all the classes. It 

is assumed that higher the number of smokers, higher is the pollutants 

concentration, especially in the household regions, which provides a conducive 

environment to induce the asthmatic conditions. Q  is the constant inflow rate of 

smokers i.e. the rate at which new members become smoker, θ  is the rate at 

which smokers become infected and join the infective class, θ  is the 

transmission coefficient due to exposure of smokers with environmental 

pollutants and θ  is the rate at which smokers quit smoking.  A(N) is the rate of 

emission of pollutants into the environment which is, in general, population 

dependent but in the subsequent analysis we assume it to be a constant A, τ  is the 

natural depletion rate  coefficient of environmental pollutants and q is the rate at 

which smokers emit fumes (inhale and exhale smoke from cigarettes, cigars, 
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pipes, etc.) which in turn increases the concentration level of pollutants in the 

environment.   is the disease induced death rate. It is assumed that all the 

dependent variables and parameters of the model are non-negative. 

 2.1 Boundedness of  Solutions 

Continuity of right hand side of system (1)-(6) and its derivative imply that the 

model is well posed for N > 0 [5]. The invariant region where solution exists is 

obtained as follows: 

            




)(

Λ

θμα

Q
 lim inf N(t)   lim sup N(t) 

μ

QΛ
 (as t→∞) 

since N(t) > 0 for all t  0. Therefore, from eq.(6), N(t) cannot blow up to infinity 

in finite time and consequently, the model system is dissipative (solutions are 

bounded). Hence, the solution exist globally for all t > 0 in the invariant and 

compact set, 
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which gives a region of attraction for any arbitrary small ε >0.  
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As N(t) tends to zero, S(t), E(t), I(t) and C(t) also tend to zero. Hence, each of these 

subpopulations tends to zero as N(t) does. It is, therefore, natural to interpret these 

terms as zero at N(t) = 0.  

 

2.2 Positivity of Solutions 

Let the initial data be N(0)= N0>0, E(0)= E00, I(0)= I00, P(0)= P00 and C(0) = 

C00 for all t  0. Then, the solution [S(t), E(t), I(t), C(t), P(t)] of the model remain 

positive for all time t  0. 

From eq.(3) we get )()()(' tIμαtI   and applying a theorem on differential 

inequalities [1] we obtain, tμαectI )()( 

  

Here c1 is a constant of integration. A similar reasoning for the remaining 

equations shows that they are always positive in Ω for t > 0. 
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We assume that at t = 0, N(t), E(t), I(t), C(t) and P(t) are all non-negative and that 

N(0) > 0. We notice that   

           




)(

Λ

θμα

Q
 lim inf N(t)   lim sup N(t) 

μ

QΛ
, this implies that S(t) > 0 

for all t. 

3.  Equilibrium and Stability Analysis 

In this section, we present the existence of model equilibrium and its local and 

nonlinear asymptotic stability analysis. 

 

3.1 Equilibrium of the Model 

For equilibrium analysis, we study the reduced system, since N(t) = S(t) + E(t) + 

I(t)+C(t), of the model system(1)-(6) as follows,   

 

              CθIαNμQ
dt

dN
 Λ                                                  (8)                               

                EμECλEPλCCIENβPCIENγ
dt

dE
 )()(    (9)                       

IμIαCPθCθECλEPλ
dt

dI
                                          (10) 

 CμCθCPθCθQ
dt

dC
                                                        (11)          

qCPτA
dt

dP
                                                                                 (12) 

The model (8)-(12) has only one non-negative equilibrium W
*
 (N

*
, E

*
, I

*
, C

*
, P

*
) 

where **** ,,, CIEN  and 
*P  are positive solutions of the following system of 

algebraic equations, 

        CθIαNμQΛ                                                                (13)                               

         EμECλEPλCCIENβPCIENγ )()(    (14)                       

        IμIαCPθCθECλEPλ                                         (15) 

        CμCθCPθCθQ                                                         (16) 
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       qCPτA                                                                     (17) 

From eq. (17) we get, 

τ

qCA
P


                                                                                                    (18) 

From eq. (16) we obtain, 

 
 QC

τ

A
θμθθC

τ

qθ
)(                                                          (19) 

This equation has two roots of C (say C1 and C2), which are given as follows, 
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Here C1<0 which is biologically irrelevant and not feasible in positive non-trivial 

equilibrium, therefore, we use positive value of C i.e. C2. 

From eq. (13) we have,  

]Λ[ IαCθQ
μ

N 


                                                                       (20) 

From eq. (15) we get,    
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From eq. (14) we obtain,                                                                             
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where 






 
 

 Cβ
τ

qCA
γl  

From eq. (21) we note, 

(i) 
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(say) >0 as E = 0 

(ii) E  as I  

(iii) 
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From eq. (22) we note, 
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(iii) 
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Thus, we get positive values of E and I (say 
*E and *I respectively) if the 

following condition 










C

μ

θ

μ

QΛ
 and I < I  are satisfied (see Figs. 1a, 

1b),  
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                                 (a)       (b) 

Figure 1. Intersection of two isoclines (21) and (22) to determine 

     existence of W* (a) when I < I  (b) when I > I  

                                            

To study the local and nonlinear (global) asymptotic stability behavior of the 

equilibrium, we propose the following theorems. 

Theorem 1.  The equilibrium W
*
 is locally asymptotically stable provided the 

condition   

















a

aaa

aaa

a

> 0  is satisfied. 

(See Appendix A for proof) 
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Theorem 2. Let the following inequalities hold in Ω,  

                       
*)(

)])()[(

)(

)(
*

****

CβPγ

μCβλPγλμ

μαμ

CλPλα








 



                                          

(23) 

then *W  is nonlinearly (globally) asymptotically stable. 

 (See Appendix B for  proof) 

Remarks: 

(1)  It is noted that the system (8)-(12) is bounded by the same system when α = 0, 

which implies that the solution of (8)-(12) is bounded by the solution of the latter. 

If α = 0, the system is globally stable without any condition. Hence we speculate 

that the nontrivial equilibrium of system (8)-(12) may be globally stable as given 

in the theorem.  

(2) If λ  and λ  tends to zero in inequality (23) , it is automatically satisfied. This 

implies that the continuous exposure to environmental pollutants and smokers has 

destabilizing effect on the system. 

(3) If  γ and β  tends to zero in inequality (23), then the possibility of satisfying the 

condition increases. This implies that these parameters have destabilizing effect 

on the system. 

4. Numerical Analysis 

It is noted here that our main aim is to show, through a nonlinear model and its 

qualitative analysis, the effects of pollutants present in the environment and 

smokers on the spread of asthma in the population. It is, therefore, desirable that 

we must show the existence of equilibrium values of variables of the model as well 

as the feasibility of stability conditions numerically for a set of parameters. 

We study the model (8-12) numerically to see the effects of various parameters on 

the spread of the disease by  Runge-Kutta fourth order method using the following 

set of parameter values given in Table 1
*
.  

Table 1. 

Parameter description Symbol Parameter 

value 

Recruitment rate of susceptibles Λ  100 

Interaction of susceptibles with smokers   0.0002 

Interaction of susceptibles with pollutants   0.0003 
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Natural death rate μ  1/70 = 0.014 

Disease induced death rate α  1/55 = 0.018 

Recruitment rate of smokers Q 60 

Rate at which smokers quit smoking  θ  0.002 

Cumulative density of pollutants A 10 

Rate at which pollution increase due to smoker’s 

smoke 

q 0.00001 

Depletion rate of environmental discharge as 

environment cleans 

τ  0.01 

Interaction of exposed persons with pollutants 
λ  0.0001 

Interaction of exposed persons with smokers 
λ  0.00015 

Rate at which smokers become infected 
θ  0.0002 

Rate at which smokers came into the contact of 

pollution 
θ  0.00025 

*Actual parameter values are not known to authors. 

The equilibrium values of different variables in W
*
 are computed as follows, 

*N =5634.98,  
*E =650.11, 

*I = 4481.09, *C =225.35, 
*P =1000.23,  

The eigen values of the matrix corresponding to equilibrium W
* 

are obtained as 

follows, 

-0.03200000000, -0.1478245471, -0.3591369540, -0.2662541383, -

0.01000219847 

Since all the eigen values corresponding to W
*
 are negative, therefore, W

*
 is 

locally asymptotically stable. It has been checked that for the above set of 

parameters, the local as well as nonlinear stability conditions are satisfied. 

 Using MAPLE the phase plane diagrams of N-I and E-I have been drawn in 

figs.(2-3) showing the nonlinear behavior of W
*
 with respect to these parameters. 
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Figure 2. Variation of population N with infectives I 

 

 

Figure 3. Variation of exposed persons E with asthmatic infectives I 
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In figs.(4-5), the asthmatic population against time is plotted for different values of 

interaction rates β  and γ  of susceptibles with smokers and pollutants respectively. 

From these figures, we note that as the interaction between susceptibles-smokers 

and susceptibles-pollutants increases, asthmatic population also increases. Figs. (6-

7) depict the variation of asthmatic population with time for different values of 

interaction rate λ  and λ of exposed individuals with pollutants and smokers 

respectively. It is seen that as the contact rate of exposed individual with pollutants 

and smokers increases, it further leads to increase the number of asthmatic 

population. Thus, it is concluded that if the continuous exposure of exposed 

individuals to environmental pollutants and smokers is restricted, the number of 

asthmatic population can be kept under control. In fig.(8), we have explicitly 

shown the effect of increase of pollutants on the asthmatic population and it is 

found that when cumulative concentration of pollutants increases, the  asthmatic 

population also increases. In fig.(9), the variation of asthmatic population is 

shown with time for different values of constant inflow rate of smokers. It is seen 

that as the recruitment rate of smokers increases, the smoker population increases 

continuously which, in turn, increases the asthmatic population.  Fig.(10) depicts 

the role of θ , the rate at which smokers quit smoking, on asthmatic population. It 

is observed that as θ  increases, the smokers population decreases. This decrease in 

smokers population results in decreasing the asthmatic population. Thus, if many 

people stay away from smoking the development and spread of the disease can be 

slowed down. Fig. (11)  shows the role  of θ , the rate at which smokers become 

infected. It is noted that as θ  increases, the higher number of smokers join the 

asthmatic class and increase the asthmatic population. Fig. (12) depicts the role of 

θ , the transmission coefficient due to exposure of smokers with environmental 

pollutants. It is seen that as θ  increases, the higher number of smokers came in 

the contact with environmental pollutants and hence the asthmatic population 

incereases.  
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Figure 4. Variation of asthmatic population I with time for different  

values of interaction rate    

 

 

Figure 5. Variation of asthmatic infectives I with time for different  

values of interaction rate  
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Figure 6. Variation of asthmatic infectives I with time for different  

values of interaction rate λ  

 

 

Figure 7. Variation of asthmatic infectives I with time for different  

values of interaction rate λ  
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Figure 8. Variation of asthmatic infectives I with time for different  

values of cumulative density of pollutants A 

 

 

Figure 9. Variation of asthmatic infectives I with time for different  

values of recruitment rate Q of smokers 
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Figure 10. Variation of asthmatic infectives I with time for different  

              values of θ , the rate by which smokers quit smoking 

 

 

Figure 11. Variation of asthmatic infectives I with time for different  

                   values of θ , the rate by which smokers become infected 
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Figure 12. Variation of asthmatic infectives I with time for different values of θ , the transmission 

coefficient due to exposure of smokers with pollutants 

 

5. Conclusion 

We have proposed and analyzed a nonlinear mathematical model for the spread of 

asthma in a variable size population by taking into account the effects of pollutants 

emitting continuously in the environment and constant inflow of smokers. It is 

assumed that susceptibles become asthmatic when they are continuously exposed 

to smoking (active or passive) or when  they enter into polluted environment and 

inhale the pollutants from the atmosphere. The model system exhibits only  one 

non-negative equilibrium which is nonlinearly asymptotically stable under certain 

conditions. It has been shown qualitatively and numerically that when pollutants 

are emitted at a constant rate into the environment and smokers are recruited 

constantly into the population, the asthma disease persistence is higher. This is due 

to the fact that as the interaction rate of susceptibles with pollutants and with 

smokers increases, the asthmatic population increases. Hence, the spread of asthma 

can be slowed down if inflow of smokers is restricted into the population and the 

rate of release of pollutants is controlled in the environment.  
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APPENDIX A 

Proof of Theorem 1.  The variational matrix of the model system (8)-(12) 

corresponding to equilibrium *W is given by, 

M( *W ) = 





































τq

CθPθμθθ

CθEλPθEλθμαCλPλ

rmnnln

αμ

**

******

)(

)(  

where 

 ** CβPγn  ,  

μCλPλCβPγl  
**** ,  

***** )( EλCIENγr  , 

)( **** CIENβm  . 

The characteristic equation corresponding to the matrix M(W
*
) is given by 

                        

)()( 









  aλaλaλaλaλλf   = 0 

where 

τμθPθθαla  

*
 > 0    

)())(()()( **** μταlμμθPθθμτCθqCλPλnμαla    > 0      

])()[())(()( **** CθqμθPθθτμαlμαCλPλnμαμla      

        ))](()([ *** τμθPθθμαlCλPλn    >0 

])()][()()([ **** CθqμθPθθτCλPλnμαlμμαla    

       )]()()[( *** CλPλnμμαlμτμθPθθ     

       )])(( *** CλPλτμθPθθαn   > 0 

)(*])()][)(()([ ***** CλPλατnCθqμθPθθτCλPλμαnμαμla 



   > 0  
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It is noted that ai > 0 (i = 0, 1, .....,4), a4a3 > a2  and a2(a4a3–a2)–a4
2
a1>0 are 

satisfied. Thus,                                                         

by Routh Hurwitz criteria, this equilibrium is locally asymptotically stable if  

 

















a

aaa

aaa

a

> 0. 

 

APPENDIX B 

Proof of Theorem 2. We consider the following positive definite function  about  
*W , 

 













 



 )()()()()( ***** PPkCCkIIkEEkNNV                        

where the constants ki (i = 1, 2,…, 4 ) can be chosen suitably.  

 The derivative of V w. r. t. ‘t’ is given as, 

)()()()()( ***** PPPkCCCkIIIkEEEkNNNV  
  









  ))(()(])()[()( ***** IIμαkEEμCβλPγλkNNμV  
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)()()()()()( ****** CCEEEλCβPγkCCEECIENβk    

        )()()()()()( **** PPEEEλkPPEECIENγk    

        )()()()()()( ***** PPIICθEλkCCIIEλPθθγk    

        )()()( *** PPCCCθkqk    

where the constants ki > 0 (for i = 1, 2, 3, 4) have been chosen as,  
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Using the above, the stability condition can be obtained as stated in the theorem. 

Hence V  will be negative definite showing that V is a Liapunov function with 

respect to *W  whose domain contains Ω, proving the theorem.  


