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INTRODUCTION 

    Data envelopment analysis (DEA) is a 

powerful methodology for evaluating relative 

efficiency (RE) of a finite set of peer multi-input 

and multi-output decision-making units (DMU). 

It was introduced by Charnes, Cooper et al. (1978) 

for the first time. Since the advent of DEA in 

1978, there has been an impressive growth both in 

theoretical developments and applications of the 

ideas to practical situations (Cook and Seiford 

2009). DEA has two well-known weaknesses. 

First, its models run individually for each DMU 

under flexibility in selecting weights in the best 

advantage. This flexibility in choosing the 

weights, on the other hand, deters the comparison 

among DMUs on a common base 

(Zohrehbandian, Makui et al. 2010, Soltanifar and 

Shahghobadi 2013, Soltanifar and Shahghobadi 

2014, Shahghobadi 2020). Second, DEA can 

classify DMUs as efficient or inefficient. 

However, there is often more than one efficient 

unit, and, in other words, it has a weak 

discrimination power. Due to the high importance 

of these two problems, they have received 

considerable critical attention from researchers. 

Aldamak and Zolfaghari (2017) reviewed and 

classified the literature on the ranking of DEA 

include those approaches published up to 2016. 

An innovative approach to solve these issues is 

using a common set of weights (CSW), which was 

proposed by  Roll, Cook et al. (1991). Chen, 

Larbani et al. (2009) outlines three essential 

features of this method; reduce computational 

complexity/time compared with the traditional 

model, strong theoretical background, and higher 

discrimination power. Another essential feature is 

to provide a common base for ranking the DMUs, 

both the efficient and inefficient ones (Kao and 

Hung 2005). A mainstream of researches agreed 

to use 𝑝 -distance measure to derive a CSW in 

DEA (Lotfi, Ebrahimnejad et al. , Roll, Cook et 

al. 1991, Kao and Hung 2005, Chen, Larbani et al. 

2009, Zohrehbandian, Makui et al. 2010, 

Hosseinzadeh Lotfi, Jahanshahloo et al. 2013, 

Hosseinzadeh Lotfi, Jahanshahloo et al. 2013, 

Sun, Wu et al. 2013, Pourhabib Yekta, 

Kordrostami et al. 2018, Izadikhah and Farzipoor 

Saen 2019). The idea behind these models is to 

find a CSW such that its corresponding efficiency 

vector is closet to a predefined target efficiency 

vector measured with 𝑝 -distance measure. This 

idea proposed by Kao and Hung (2005) for the 

first time and followed by Chen, Larbani et al. 

(2009), (Zohrehbandian, Makui et al. 2010). Here, 

we focus on these models and refer them as 𝑝 -

distance-based CSW models. 

A CSW is used to approximate a target efficiency 

score. Since the generated efficiency score has an 

essential role in evaluating and ranking the 

DMUs, it is crucial to the generated efficiency 

score of a DMU as close as possible to its target 

efficiency score.  Roll, Cook et al. (1991) also 

believed that a general requirement of such a set 

(CSW) is that it explains as high a portion as 

possible of DMU performance. As a summary, a 

CSW must be able to approximate the efficiency 

target of DMUs with the least individuals and 

overall deviations. 

This study aims to examine 𝑝 -distance-based 

CSW models from deviations aspect. The key 

question is, what the main factors are contributing 

to the reduction of individuals and overall 

deviations of generated efficiency scores from 

corresponding target efficiency targets? We found 

that parameter 𝑝 and the data set have a direct and 

significant impact on the variations. We have two 

simple suggestions for improving the 

performance of existing models to reduce 

deviations. Numerical examples and a simulation 

test revealed that our proposal was very effective 

in reducing deviations. 

The remained of the paper is structured as 

follows. In section 2, we review the DEA and 

distance-based CSW models. In section 3, we 

describe our motivation by a simple numerical 

example. In section 4, the adjusted models are 

presented. In section 5, we compare the proposed 

models with the previous ones via two numerical 

examples. Also, it contains the result of the 

correlation test and simulation analysis. Finally, 

section 7 concludes the study and provides 

directions for further works. 

PRELIMINARIES 

    First of all, we declare the notations used in this 

study. the 𝑛 -dimensional euclidean space is 

denoted by 𝑅𝑛 and non-negative orthant denoted 
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by 𝑅+
𝑛. We symbolize the sets by capital letters, 

set members by lower-case letters, vectors, and 

matrices in bold letters: vectors in lower case and 

matrices in upper case. All vectors are column 

vectors and the transpose of vectors and matrices 

displayed by a superscript T. We also use 𝟎𝑛 and 

𝟏𝑛 to show n-dimensional vectors with zero and 

one component, respectively. Also, the set of 

natural numbers from 1 to 𝑛 is displayed by [𝑛]. 
Furthermore, the superscript for a variable shows 

the optimal value of the variable. 

 

DEA 

 Consider 𝑛 DMUs with 𝑚 inputs and 𝑠 outputs. 

Let 𝑥𝑗 = (𝑥1𝑗, . . . , 𝑥𝑚𝑗)
𝑇 and 𝑦𝑗 = (𝑦1𝑗, . . . , 𝑦𝑠𝑗)

𝑇 

denote the input and the output vectors of DMU𝑗 
for 𝑗 ∈ [𝑛]. One version of the CCR model is a 

two-phase CCR model which is as follows 

(Charnes, Cooper et al. 1978) : 

Phase I  
Solve the envelopment form of the CCR model : 

 

 

𝑒𝑜
∗ = 𝑀𝑖𝑛  𝑒 

𝑠. 𝑡: 

∑

𝑗∈[𝑛]

𝜆𝑗𝑥𝑗 + 𝑠
− = 𝑒𝑥𝑜 𝑖 ∈ [𝑚] 

∑

𝑗∈[𝑛]

𝜆𝑗𝑦𝑗 − 𝑠𝑟
+ = 𝑦𝑟 𝑟 ∈ [𝑠] 

𝜆𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

(1) 

 

 

where 𝑠+ ∈ 𝑅𝑠 and 𝑠− ∈ 𝑅𝑚 are the output 

shortfalls and the input excesses, respectively. 

Phase II  

Use 𝑒𝑜
∗ and solve the following model:  

 

 

𝑤𝑜
∗ = 𝑀𝑎𝑥(𝟏𝑚

𝑡 𝒔− + 𝟏𝑠
𝑡𝒔+) 

𝑠. 𝑡: 

∑

𝑗∈[𝑛]

𝜆𝑗𝑥𝑗 + 𝑠
− = 𝑒𝑜

∗𝑥𝑜 𝑖

∈ [𝑚] 

∑

𝑗∈[𝑛]

𝜆𝑗𝑦𝑗 − 𝑠𝑟
+ = 𝑦𝑟 𝑟 ∈ [𝑠] 

𝜆𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

(2) 

 

 

 

Definition 2.1 (Cooper, Seiford et al. 2007) Let 

𝑒𝑜
∗ and 𝑤𝑜

∗ are optimal values models (1) and (2), 

respectively.   

    • DMU𝑜 is CCR efficient if and only if 𝑒𝑜
∗ = 1 

and 𝑤𝑜
∗ = 0.  

    • DMU𝑜 is radial CCR efficient if 𝑒𝑜
∗ = 1.  

    • Otherwise, the DMU𝑜 is called CCR-

inefficient.  

  

Let (𝑒𝑜
∗, 𝑠−∗, 𝑠+∗) is an optimal solution of the 

model (1). The radial projection and the CCR 

projection of (𝒙𝑜 , 𝒚𝑜) are defined equations (3) 

and (4), respectively as follows : 

  

 (
�̄�𝑗 = 𝑒𝑜

∗𝒙𝑜
�̄�𝑜 = 𝒚𝑜 𝑗 ∈ [𝑛]

 (3) 

 

 
(
�̂�𝑗 = 𝑒𝑜

∗𝒙𝑜 − 𝒔
+∗

�̂�𝑜 = 𝒚𝑜 − 𝒔
−∗ 𝑗 ∈ [𝑛]

 (4) 

 

 

CSW  

Charnes, Cooper et al. (1978) defined the 

efficiency function as 𝑒𝑗: 𝑅+
𝑚 × 𝑅+

𝑠 → 𝑅+ and 

𝑒𝑗(𝑢, 𝑣) =
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
, for DMU𝑗. It has showed that 

DMU𝑜 is CCR efficient if and only if the optimal 

value of the following fractional form of the CCR 

model equals to 1. See (Charnes, Cooper et al. 

1978) for details.  

 

 

𝑒𝑘
∗ = 𝑀𝑎𝑥

𝑢𝑡𝑦𝑘
𝑣𝑡𝑥𝑘

 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1            𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 

(5) 

 

Where 𝑢 and 𝒗 can be interpreted as the virtual 

cost and price vectors of inputs and outputs, 

respectively, and 𝜀 is a small non-Archimedes 

quantity. See (Amin and Toloo 2004) for more 

details. 
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Kornbluth (1991) integrated all individual DEA 

models in one multi-objective linear fractional 

programming as follows. It is the basic model for 

generation CSWs. 

 

 

𝑀𝑎𝑥𝑒(𝑢, 𝑣) = (
𝑢𝑡𝑦1
𝑣𝑡𝑥1

, . . . ,
𝑢𝑡𝑦𝑛
𝑣𝑡𝑥𝑛

) 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 
 

(6) 

 

Kao and Hung (2005) considered the CCR 

efficiency vector, 𝑒∗ = (𝑒1
∗, . . . , 𝑒𝑛

∗), as the target 

efficiency vector and looked for a CSW such that 

its corresponding efficiency vector has the 

minimum 𝑝 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from 𝑒∗ as follows: 

  

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
− 𝑒𝑗

∗)𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 

(7) 

 

Chen, Larbani et al. (2009)  defined 𝑔𝑘(𝑢, 𝑣):=
𝑣𝑡𝑥𝑘 − 𝑢

𝑡𝑦𝑘 as a basis efficiency measure and 0𝑛 

as the target efficiency vector and with the same 

strategy as Kao and Hung (2005) suggested the 

following model: 

 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑣𝑡𝑥𝑗 − 𝑢
𝑡𝑦𝑗)

𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑣𝑡𝑥𝑗 − 𝑢

𝑡𝑦𝑗 ≥ 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

 

(8) 

 

Zohrehbandian, Makui et al. (2010) integrated the 

(Kao and Hung 2005) idea with another 

innovative idea that was using of radial projected 

data set instead of the original data set, and then 

proposed the following model: 

 𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑣𝑡(𝒆𝒋
∗𝑥𝑗) − 𝑢

𝑡𝑦𝑗))
𝑝)
1
𝑝 (9) 

𝑆. 𝑡: 
𝑣𝑡(𝒆𝒋

∗𝑥𝑗) − 𝑢
𝑡𝑦𝑗 ≥ 0 𝑗 ∈ [𝑛] 

𝟏𝑠
𝑡𝒖 + 𝟏𝑚

𝑡 𝒗 = 1 

𝑢 ≥ 0𝑠 , 𝑣 ≥ 0𝑚 
 

We will see how much is effective in reducing 

deviations the idea of using the projected data set. 

We call each one of these models by the name of 

the first author of the corresponding paper. 

 

MOTIVATION 

   It is easy to verify that these models are specific 

states of the following more general model.  

 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑟𝑗)
𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑡𝑗 − 𝑑𝑗(𝑢, 𝑣) = 𝑟𝑗  𝑗 ∈ [𝑛] 

(𝑢, 𝑣) ∈ 𝑊𝑟𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

 

 where: 

1. efficiency measure 𝑑𝑗: 𝑅
𝑠 × 𝑅𝑚 → 𝑅 : 

 

 𝑑𝑗(𝑢, 𝑣): =

{
 
 

 
 

𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (7)

𝑢𝑡𝑦𝑗 − 𝑣
𝑡𝑥𝑗 ,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (8)

𝑢𝑡𝑦𝑗 − 𝑣
𝑡𝑥𝑗 ,     𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (9)

  

 

  

2.target efficiency score 𝑡𝑗 ∈ 𝑅 

 𝑡𝑗(𝑢, 𝑣): = {

𝑒𝑗∗ ,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (7)

0,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (8)
0,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (9)

 
 

 

 

3. residual variable 𝑟𝑗  

𝑟𝑗(𝑢, 𝑣):= 𝑡𝑗 − 𝑒𝑓𝑗 
 

4. Weight restriction set  

   and 𝑟𝑗 
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and 𝑟𝑗 

Note that we can consider 𝐷′ = ∑𝑛𝑘=1 (𝑟𝑗)
𝑝 

instead of 𝐷 = (∑𝑛𝑘=1 𝑟𝑗)
𝑝)

1

𝑝 which is more 

straightforward in its mathematical expression, 

and a solution (𝑢, 𝑣) minimizes 𝐷𝑝 if, and only 

if, it minimizes 𝐷𝑝
′  (Kao and Hung 2005). 

The ideal value for 𝑟𝑗 is zero, and model(10) uses 

the penalty function 𝑟𝑗
𝑝
 to achieve this goal. 

Regarding the strictly increasing property and the 

shape of these functions for 𝑝 > 1, they impose a 

heavier penalty for residuals larger than one 

compared to residuals less than one, and the 

intensity of this operation increases, if 𝑝 

increases. This leads to rotating the solution 

towards DMUs with large residuals and moving 

away from DMUs with small residuals. In short, 

𝑟𝑗
𝑝
 with 𝑝 > 1 will disrupt the balance and the 

principle of neutrality in favor of some units; 

hence, it can be said that these functions have a 

biased operation. This, together with the fact that 

the problem for 𝑝 = 1 will tend to have more zero 

and very small residuals, [4, Page 311], gives us 

the expectation that the problem for 𝑝 = 1 

generate more better solution. To clarify, we 

explain these cases by a numerical example. 

Example 3.1 In this example, at first, we compare 

the obtained result from the mentioned models for 

𝑝 = 1 and 2. Let we take six DMUs with two 

inputs and one output as follows: 

 

 𝑿𝟏 = (
1 2 2
4 1.75 3.5

   
4 10 2
1 3 4

) 

and  

 𝒀𝟏 = (1 1     1 1     1 1) 
 

The production possibility set (Cooper, Seiford et 

al. 2007) is depicted in Fig. 1. We employed 

Model Kao, Model Zohrebandian, and Model 

Chen with 𝑝 = 1 and 𝑝 = 2, and displayed 

obtained CSWs and efficiency vectors in   Table 

2,respectively. 

 

 
 

Fig. 1. Farrell frontier for data of example 3.1 

Table 1: Generated CSWs by different models 

 Chen Zohrehbandian Kao 

 𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2 p=1 p=2 

𝑣1 0.000000000001 0.000000000004 0.000000236842 0.000000175448 0.035397000000 3.200400000000 

𝑣2 0.000000000001 0.000000000008 0.000000105263 0.000000172239 0.015848000000 3.200400000000 

𝑢 0.000000000003 0.000000000013 0.000000657895 0.000000652313 0.098307000000 3.200400000000 

  

 
 

Table 2: Generated efficiency scores by different models with p=1 and p=2 

 Chen Zohrehbandian Kao CCR 
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 𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2 p=1 p=2 

𝐷𝑀𝑈1 0.55 0.3575 1 0.7546 0.9951 0.9297 1 

𝐷𝑀𝑈2 0.7333 0.6128 1 1 0.9978 0.6658 1 

𝐷𝑀𝑈3 0.5 0.3648 0.7812 0.684 0.7786 0.5939 0.781 

𝐷𝑀𝑈4 0.55 0.5957 0.625 0.7463 0.6244 0.3644 1 

𝐷𝑀𝑈5 0.2115 0.2215 0.2451 0.2872 0.2448 0.1447 0.370 

𝐷𝑀𝑈6 0.4583 0.327 0.7353 0.6273 0.7326 0.5761 0.735 

 

  

 
Table 3: Deviations of generated efficiency scores from CCR efficiency scores 

  Chen  Zohrehbandian  Kao 

  𝑝 = 1   𝑝 = 2   𝑝 = 1   𝑝 = 2   p=1   p=2  

 𝑒1
∗ − 𝑒1

𝐶𝑆𝑊  0.45   0.6425   0   0.2454   0.0049   0.2371  

𝑒2
∗ − 𝑒2

𝐶𝑆𝑊   0.2667   0.3872   0   0   0.0022   0.0042  

𝑒3
∗ − 𝑒3

𝐶𝑆𝑊   0.2812   0.4165   0   0.0973   0.0026   0.095  

𝑒4
∗ − 𝑒4

𝐶𝑆𝑊   0.45   0.4043   0.375   0.2537   0.3756   0.2655  

𝑒5
∗ − 𝑒5

𝐶𝑆𝑊   0.1588   0.1488   0.1253   0.0832   0.1255   0.0873  

𝑒6
∗ − 𝑒6

𝐶𝑆𝑊   0.277   0.4083   0   0.108   0.0027   0.105  

overall 

deviation 

 1.8837   2.4076   0.5003   0.7875   0.5135   0.7941  

 

The deviation of each obtained efficiency score 

from the corresponding CCR efficiency score is 

displayed in Table  3. 

Regarding Table 2, the results of each model were 

more desirable with 𝑝 = 1 than 𝑝 = 2. 

Now, we consider models Zohrebandian and 

Chen with 𝑝 = 1. However, these models use the 

same objective function and efficiency measure; 

the Zohrebandian model produced a more 

desirable solution. To find out the cause of this 

superiority, we focus on their differences; weight 

restriction set and the data set. It is easy to see that 

𝑊2 ⊆ 𝑊3 Moreover, this is effective in improving 

the optimal value. Hence, only one factor remains. 

For this reason, we have 𝑒𝑗
∗𝑣𝑥𝑗 − 𝑢𝑦𝑗 ≤ 𝑣𝑥𝑗 −

𝑢𝑦𝑗 for an arbitrary feasible (𝑢, 𝑣) and any 𝑗 ∈

[𝑛]. Equivalently, the residual variables have 

smaller values in the Zohrebandian model 

compared with the Chen model, and this reduces 

the leverage effect of 𝑟𝑗
𝑝
. Besides, the projected 

data is more homogeneous than the original data, 

and it seems more reasonable to fit them an 

efficient frontier. Therefore, using a projected 

data set can be the most effective factor for this 

superiority. 

To see how much-projected data is effective in 

reducing deviation, imagine a case that there is a 

weak efficient DMU among observed units. Let 

we change the input vector of DMU5 changes to 

(
10
1
) in 𝑿𝟏, and 𝑌1 remains unchanged. The new 

point is displayed by 5∗ in Fig. 1. It is on the weak 

efficient frontier, and when it coincides with its 

radial projection. Also, the new input matrix is 

denoted by 𝑋2 and we have:  

 𝑿𝟏 = (
1 2 2
4 1.75 3.5

   
4 10 2
1 3 4

) 

 

By reusing again of the Zohrebandian model, the 

generated CSW changes from 

(0.2368,0.1052,0.6578)𝑇 to 
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(0.0968,0.2581,0.6452), the efficiency vector 

changes from (1,1,0.781,0.625,0.245,0.733)𝑡 to 

(0.571,1,0.581,1,0.526,0.526)𝑡, the individual 

deviation vector changes from 

(0,0,0,0.375,0.1253,0) 
to(0.4286,0,0.193,0,0.4737,0.209) and 

subsequently the overall deviation changes from 

0.5 to 1.3042. Briefly, this change leads to rotate 

the common efficient frontier from 1 − 2 line 

toward the dash line as displayed in Fig. 1 . 

AN IMPROVEMENT 

 

As we saw, using 𝑝 = 1 and radial projected data 

set are effective strategies to produce efficiency 

scores with a small deviation from CCR 

efficiency scores. To more reduce residuals, we 

proposed to use CCR projected data instead of 

radial projected data in Chen and Zohrebandian 

models with 𝑝 = 1. By taking 𝑝 = 1 and using 

(𝑥𝑗 , 𝑦𝑗), these models are as follows, respectively: 

 

 

𝑀𝑖𝑛∑

𝑗

𝑟𝑗 

𝑆. 𝑡: 
𝑣𝑡�̂�𝑗 − 𝑢

𝑡�̂�𝑗 − 𝑟𝑗 = 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

(11) 

 

 

𝑀𝑖𝑛∑

𝑗

𝑟𝑗 

𝑆. 𝑡: 
𝑣𝑡�̂�𝑗 − 𝑢

𝑡�̂�𝑗 − 𝑟𝑗 = 0 𝑗 ∈ [𝑛] 

1𝑠
𝑡𝑢 + 1𝑚

𝑡 𝑣 = 1, 𝑢 ≥ 0𝑠, 𝑣 ≥ 0𝑚 

(12) 

 

 

Because 𝑊2 ⊆ 𝑊3 for each 𝜀, so model (11) has 

fewer residuals than the model (12). In spit of this 

priority of 𝑊3, it doesn’t guaranty the generated 

CSW to be positive. 

 

Theorem 4.1 let (𝑢, 𝑣, 𝑟) is an optimal solution 

for (11). If 𝑟𝑜 = 0 for some 𝑜 ∈ [𝑛], then  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= 𝜃𝑜

∗ − 𝜀(1𝑠
𝑡𝑠−∗ + 1𝑚

𝑡 𝑠+∗) 

where (𝜃∗, 𝑠−∗, 𝑠+∗) is an optimal solution.  

 

Proof. First, we have  

 𝑢𝑡𝑦𝑜 − 𝑣
𝑡𝑥𝑜 = 0 

Next, consider the dual problem. 

 

 

𝑀𝑎𝑥 𝑢𝑡𝑦𝑜 

𝑣𝑡𝑥𝑜 = 1 

𝑆. 𝑡:  
𝑣𝑡𝑥𝑗 − 𝑢

𝑡𝑦𝑗 − 𝑟𝑗 = 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

(13) 

  

 

It is easy to see that the vector (𝑢 =
𝑢

𝑣𝑥𝑜
, 𝑣 =

𝑣

𝑣𝑥𝑜
), is an optimal solution to this problem. If 

(𝜆∗, 𝑠−∗, 𝑠+∗) , is also an optimal solution for (11), 

then we have from Complementary Slackness 

Theorem [3, Section 6] (Cooper, Seiford et al. 

2007) that:  

 

 

(𝑢 − 𝜀1𝑠 )
𝑡𝑠−∗ = 0 

(𝑣 − 𝜀1𝑚 )
𝑡𝑠+∗ = 0 (14) 

 

 

or  

 

𝑢𝑡𝑠−∗ = 𝜀1𝑠
𝑡𝑠−∗

𝑣𝑡𝑠+∗ = 𝜀1𝑚
𝑡 𝑠+∗ (15) 

 

 

Then  

 𝑢𝑡(𝑦𝑜 + 𝑠𝑠
−∗) − 𝑣𝑡(�̂�𝑜

∗𝑥𝑜 + 𝑠𝑠
−∗) = 0 

and  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= �̂�𝑜

∗ −
𝑢𝑡𝑠𝑠

−∗+𝑣𝑡𝑠𝑠
+∗

𝑣𝑡𝑥𝑜
 

This together (15) give  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= 𝜃𝑜

∗ − 𝜀(1𝑠
𝑡𝑠−∗ + 1𝑚

𝑡 𝑠+∗) 

 

 

The above Theorem states that DMU𝑜 is CCR 

efficient, if �̄�𝑜 = 0 in an optimal solution, 
(𝑢, 𝑣, 𝑟), of the model (11). 

 

NUMERICAL EXAMPLE 

 This section contains two numerical examples 

that are brought to compare the proposed models 

with other mentioned distance-based CSW 

models.  
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Example 5.1 This example compares the 

proposed models to the former ones based on the 

numerical example we had at the Motivation 

section. Consider again X1 and Y1 as they were. 

At first, we projected data according to the four 

equations, and then employed the proposed 

models, and they are prior once. The obtained 

CSWs and their efficiency scores are displayed in 

Table 4 and Table 6, respectively. By comparing 

columns 1 and 3 with the CCR column in Table 5, 

we can see that model (11)  has succeeded in 

reducing the individuals and overall deviations 

compared to the Chen model. 

Next, we consider the case of the example that the 

Zohrebandian model got into trouble with it; 𝑋2 

and 𝑌1. After projecting data and employing the 

proposed models, the obtained CSWs and 

efficiency scores are shown in Table 6 and Table 

7 Interestingly, the adjusted Zohrehbandian 

model, model, could prevent of rotation answer 

toward to DMU5∗ and could reduce deviations 

again. 

 

Table 4:  Data for example 5.1 

 Chen,p=1 Zohrehbandian,p=1 Model (11) Model (12) 

𝑣1 0.0001 0.236842 0.0001 0.236842 

𝑣2 0.0001 0.105263 0.0001 0.105263 

𝑢 0.000275 0.657895 0.000375 0.657895 

 

 

Table 5: Efficiency scores of the proposed models and their prior ones for X1 and Y1 

 Chen, p=1 Zohrehbandian, p=1 Model (11) Mode (12) CCR 

DMU1 0.55 1 0.75 1 1 

DMU2 0.733 1 1 1 1 

DMU3 0.5 0.781 0.682 0.781 0.781 

DMU4 0.55 0.625 0.75 0.625 1 

DMU5 0.212 0.245 0.288 0.245 0.3704 

DMU6 0.458 0.735 0.625 0.735 0.7353 

Overall deviation 1.88371 0.50027 0.79163 0.50027 

 

 
Table 6: Generated CSWs by different models 

 Chen,p=1 Zohrehbandian,p=1 Model (11) Model (12) 

𝑣1 0.0001 0.096774 0.0001 0.236842 

𝑣2 0.0001 0.258065 0.0001 0.105263 

𝑢 0.000275 0.645161 0.000375 0.657895 

 

 

 
Table 7: Efficiency scores of the proposed models and their prior one for X2 and Y1 

 Chen,p=1 Zohrehbandian,p=1 Model (11) Mode (12) CCR 
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DMU1 0.55 0.571 0.750 1 1 

DMU2 0.733 1 1 1 1 

DMU3 0.5 0.588 0.682 0.781 0.781 

DMU4 0.55 1 0.75 0.625 1 

DMU5 0.25 0.526 0.341 0.245 1 

DMU6 0.458 0.526 0.625 0.735 0.735 

Overall deviation 2.47488 1.30425 1.36822 1.10844 

 

Example 5.2 In this example, we examine a 

numerical example that came in (Kao and Hung 

2005). It contains seventeen DMUs with four 

inputs and three outputs. Data and attained results 

are exhibited from Table 8 to Table 10. 

This example revealed two points. First, the 

proposed models, model (12) and model (11), 

could obtain the first and the second places, 

respectively, among all CSW models from 

generating the most similar approximation for 

CCR efficiency scores point of view. In addition, 

their efficiency vectors have the highest number 

of zero residuals. Second, model (12) as expected 

generated a zero input weight; however, all 

components of the CSW derived from model (11) 

were positive. 

 
Table 8: Efficiency scores of the proposed models and their prior one for X2 and Y1 

 Inputs Outputs 

DMUs 𝑖1 𝑖2 𝑖3 𝑖4 𝑜1 𝑜2 𝑜3 

DMU1 51.62 11.23 49.22 33.52 40.49 14.89 166.71 

DMU2 85.78 123.98 55.13 108.46 43.51 173.93 6.45 

DMU3 66.65 104.18 257.09 13.65 139.74 115.96 0 

DMU4 27.87 107.6 14 146.43 25.47 131.79 0 

DMU5 51.28 117.51 32.07 84.5 46.2 144.99 0 

DMU6 36.05 193.32 59.52 8.23 46.88 190.77 822.92 

DMU7 25.83 105.8 9.51 227.2 19.4 120.09 0 

DMU8 123.02 82.44 87.35 98.8 43.33 125.84 404.69 

DMU9 61.95 99.77 33 86.37 45.43 79.6 52.62 

DMU10 80.33 104.65 53.3 79.06 27.28 132.49 42.67 

DMU11 205.92 183.49 144.16 59.66 14.09 196.29 16.15 

DMU12 82.09 104.94 46.51 127.28 44.87 108.53 0 

DMU13 202.21 187.74 149.39 93.65 44.97 184.77 0 

DMU14 67.55 82.83 44.37 60.85 26.04 85 23.95 

DMU15 72.6 132.73 44.67 173.48 5.55 135.65 24.13 

DMU16 84.83 104.28 159.12 171.11 11.53 110.22 49.09 

DMU17 71.77 88.16 69.19 123.14 44.83 74.54 6.14 

 

    

 
Table 9: Generated CSWs by different models 

 Chen,p=1 Zohrebandian, p=1 Model (11) Mode (12) Kao,p=1 Wang 1 Wang 2 
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𝑣1 0.0001 0.097976 0.006946 0.200409 959.4586 1591.678 0.000657 

𝑣2 0.0001 0.372243 0.011358 0.346254 2313.361 4931.297 0.003527 

𝑣3 0.006333 0 0.0001 0 0.001505 3807.445 0.000225 

𝑣4 0.000828 0.125069 0.001511 0.03428 0.00168 1939.971 0.000516 

𝑢1 0.0001 0.01455 0.001061 0.066351 531.8955 3551.854 0.000321 

𝑢2 0.001675 0.38793 0.012227 0.350344 1988.85 7044.92 0.003639 

𝑢3 0.0001 0.002231 0.0001 0.002362 7.691254 56.7372 2.38E-05 

 

  

   

 
Table 10: Efficiency scores of the proposed models and their prior one 

 Chen,p=1 Zohrebandian,p=1 Model (11) Mode (12) Kao,p=1 Wang 1 Wang 2 

DMU1 0.999711 1 1 1 1 1.098501 1.398082 

DMU2 .644462 1 1 1 1 1.181471 1.151319 

DMU3 .125715 1 .925255 1 1 0.808081 0.980557 

DMU4 0.999552 0.842843 1 1 1 1.116814 1.023499 

DMU5 0.853745 0.95927 1 1 0.974747 1.251716 1.087137 

DMU6 0.999754 1 1 0.965676 0.852368 1.242465 1.007855 

DMU7 0.776811 0.666414 0.862937 0.874221 0.9244 0.879898 0.869819 

DMU8 0.389958 0.91384 0.833837 0.846816 0.895351 0.943903 1.088737 

DMU9 0.887039 0.635705 0.675601 0.678267 0.661897 0.897495 0.751314 

DMU10 0.543215 0.914929 0.883372 0.877981 0.872087 1.032459 1.036319 

DMU11 0.331456 0.796206 0.667748 0.652726 0.639835 0.755741 0.850491 

DMU12 0.445061 0.678381 0.701635 0.717405 0.745557 0.861775 0.818349 

DMU13 0.295552 0.713268 0.624594 0.622738 0.622927 0.731393 0.78322 

DMU14 0.425523 0.741348 0.709846 0.712437 0.713992 0.862642 0.84214 

DMU15 0.514996 0.674491 0.731578 0.721535 0.724498 0.765032 0.805901 

DMU16 0.16325 0.627977 0.666354 0.669722 0.699632 0.516827 0.741249 

DMU17 0.233724 0.535428 0.566832 0.592378 0.631 0.651293 0.653658 

Distance 5.8408 1.7703 1.3229 1.2917 1.5567 2.08808 1.51022 

 

  

CORRELATION ANALYSIS 

Pearson’s correlation between each generated 

efficiency vector and CCR efficiency vectors 

have computed, and results have displayed in 

Table 11. 

 

  

   
Table 11: Results of Pearson’s correlation 

 Chen Zohrehbandian Model (11) Mode (12) 

Rho 0.6181 0.7782 0.7709 0.7782 
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Pval 0.0082 0.0002 0.0003 0.0002 

 

 

 

    It concludes all efficiency vectors are 

positively correlated to their target efficiency 

vector. However, both efficiency vectors 

generated by the proposed models are correlated 

with �̂�∗ more robust than other efficiency vectors 

generated by other models.  

   In the above examples, we saw that the 

proposed models performed better than prior 

models, correspondingly. We simulated to 

measure how much these events likely to happen. 

For this reason, we regenerated the data of 

Example 5.2 uniformly for 100 times. Each time 

that a data set generated, first models, Phase I, 

Phase II, Chen, Zohrebandian, and Kao, for 𝑝 =
1, and then models (11) and (12) were employed. 

Next, we computed the overall deviation of each 

obtained efficiency vector from the CCR 

efficiency vector and identified the model, which 

has a small overall deviation. Finally, by 

comparing total results, it is revealed that first, 94 

percent of the iteration model (11) operated more 

efficiently than the Chen model. Second, model 

(12) in 39 percent of iterations and the 

Zohrebandian model in 24 percent of iteration 

were successful. In the end, model (11), model 

Kao with p=1, and model Zohrebandian were able 

to gain the best overall deviation in 56, 24, and 20 

times of iterations. 

 

CONCLUSION 

    In this paper, it has been shown that a 𝑝 

distance-based CSW model for 𝑝 = 1 generates a 

solution with smaller individual and overall 

deviation than when 𝑝 > 1. Also, it has been 

shown that if the data set is projected on the 

strongly efficient frontier fist of all, then the 

deviations associated with the solution will 

reduce significantly. Since oftentimes, an 

efficiency vector derived from a CSW used as an 

alternative for CCR efficiency vector, it is very 

important to have the least individual and overall 

deviations as much possible. We suggested 

improvements for two prior 𝑝 distance-based 

CSW models based on those we found out. The 

proposed models were more successful then 

corresponding prior models in numerical 

examples and in a simulation analysis that we 

have conducted. 
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