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Accept Date: 06 July 2022             In traditional DEA, DMUs are divided into Efficient and inefficient, 

but the score of all efficient units are equal to one and there is no 

discrimination between them. Thus many ranking methods are proposed 

to increase discrimination power. This paper proposes an integrated 

framework of cooperative games and entropy to rank efficient units by 

considering efficient units as players in a cooperative game, A subset of 

these players is defined as the coalition of S. The sum of the efficiency 

of inefficient DMUs with respect to the frontier of production possibility 

set contain inefficient DMUs and the member of coalition S is defined as 

the characteristic function of the coalition S, which is used to determine 

the marginal effect of efficient DMUs. Then, a new Shapley Value 

resulted from aggregating the marginal effects of efficient DMUs 

weighted by Shannon entropy is used for ranking efficient DMUs. For 

the first time, we use the entropy to create a Shapley value for calculating 

the rank of efficient units.
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INTRODUCTION 

   Data Envelopment Analysis (DEA) is a 

scientific non-parametric technique for evaluating 

Decision-Making Units(DMUs). This method 

evaluates the performance of homogenous DMUs 

that use some inputs to produce some outputs. 

Originally, Charnes et al. [6]  (Charnes et al., 

1978) introduced a linear programing method for 

evaluating the efficiency of DMUs without 

recognizing the production function, as CCR 

model. Later, Banker et al. [3], by adding a 

constraint corresponds to variable returns to scale, 

turned it into the BCC Model. In conventional 

DEA models, units are divided into efficient and 

inefficient, in which each efficient DMU has 

value one, without distinction among efficient 

DMUs. In order to rectify this problem, some 

models for ranking DMUs have been proposed 

[1].  

   CIn the new DEA literature, game theory and 

entropy are concepts to evaluate performance and 

ranking. situation in which there is a set of 

competitive players. Game theory can be used in 

such a frame work with conflicting interests. 

       The players of the game can act in the 

competitive and non-competitive circumstances. 

Considering the inherent competitive nature in the 

process of evaluating the performance of the 

DEA, attempts are made to link DEA models to 

game theory. Cooperative games have a 

significant share in these combined studies. Nash 

bargaining and Shapley's value has the largest 

share in the methods obtaining cooperative game 

solutions. Wu et al. [29] used the Nash bargaining 

game to find a common weight vector and 

performance score.  Li and Liang [15] ranked the 

importance of input and output variables using the 

Shapley value as a solution of a cooperative game. 

Wu et al.[31] also introduced a way to choose the 

best competitor using Shapley value. Wu et al. 

[13] used the Nucleolus solution and the Shapley 

value [28] in the cooperative game to determine 

the final weights at cross efficiency performance. 

Nakabayashi and Tone [19] applied the solution 

of Shapley and Nucleus to distribute a prize fairly 

between the players of a cooperative game. Lee et 

al. [16] and Hinujosa et al. [10] utilizing 

cooperative game, ranked efficient units in a 

common framework. An et al. [2] approach 

fixed-cost allocation of two-stage systems by 

considering cooperation among DMUs. Do et al. 

[8] for evaluating the performance of two-stage 

networks and Zhou et al. [34] for decomposing 

the performance in a centralized two-stage model 

applied the bargaining game. Mahmoudi et al. 

[18] proposed a DEA-Game model to evaluate the 

performance of network structure in which 

initially divided into several subnets. In this 

model, input variables are categorized to measure 

the efficiency of subnets in each input group. And 

then the network efficiency is calculated by 

collecting the efficiency scores of the subnets in 

each group. A marginal probability 

transformation method based on Shapley value 

proposed to rectify the problems in 

transformation of basic probability assignment 

into a probability distribution function [12]. 

       Since the introduction of entropy as a tool to 

measure, by Claude Shannon [22], Shannon’s 

concept of entropy has been used in different 

disciplines. It is used as a measure of dispersal of 

trips, the amount of disorder of a system, the 

degree of randomness in the event, a measure of 

fuzziness, a weighting tool. In DEA studies, 

Shannon entropy is used as an acceptable 

weighting tool based on the degree of 

diversification for aggregation. By examining the 

combined studies of DEA and entropy, we arrive 

at the application of Shannon entropy in the fields 

of ranking, cross-evaluation, common weights, 

discrimination, namely. Soleimani-Damaneh and 

Zarepisheh [24] utilized the Shannon’s entropy 

for combining the efficiency results of different 

types of DEA models. On the other hand, Yang et 

al. [33] used bootstrap method to measure 

influential DMU in the data envelopment 

analysis. To prevent making unrealistic 

assumptions about the true distribution they 

estimate the basic distribution for efficiency 

scores. Moreover, Wu et al. [30] applied the 

Shannon entropy instead of averaging to 
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determine the weights for ultimate cross 

efficiency scores. Hsiao et al. [11] performed 

evaluation in DEA by introducing entropy in the 

Russell and slack-based measure. Qi, and Guo 

[20] combined the DEA common weights with 

Shannon’s entropy. Xie et al.[32]  used Shannon's 

entropy to improve the discriminatory power of 

DEA. Wang et al. [26] presented an entropy cross-

efficiency model for decision making units with 

interval data. Storto [17] With the help of DEA 

cross-efficiency and Shannon’s entropy method, 

provided ecological efficiency based ranking of 

cities. Later Ghosh et al.[9] quantify the relative 

performance of aerosols on photovoltaic cells by 

combining both Shannon's entropy and DEA. 

Rotela et al. [21] proposed a new approach for 

portfolio optimization by using Entropic data 

envelopment analysis. Çakır[5] proposed the 

imprecise Shannon’s entropy method and the 

acceptability index for resource allocation, an 

interval inverse DEA model is performed. Lee 

[14] combined cross efficiency scores obtained 

from different evaluation models, using 

Shannon’s entropy. Si and Ma [23] expressed 

DEA cross-efficiency ranking method based on 

grey correlation degree and relative entropy. Su 

and Lu [25] defined Cross-Efficiency based on 

entropy with the technology of variable returns to 

scale. 

       Although DEA and game theory, as well as 

DEA and entropy, have been used to rank units 

before, a combined approach of all three DEA, 

game theory, and entropy has not yet been used 

for ranking. Also, Shannon entropy has not been 

used to weigh the Shapley value in non-DEA 

studies. The initial defined Shapley value [7] is 

based on the aggregation with the same weight of 

all the marginal effects of a player in different 

coalitions, or based on its share in various 

entrance to the permutations in grand coalition. In 

this paper, it is suggested that Shannon entropy is 

used as the required weight in the definition of 

Shapley value. In fact, instead of using the usual 

average to aggregate marginal shares in Shapley 

value, we use the entropy of marginal shares of 

each player for this purpose. This study intends to 

offer a new approach for ranking efficient DMUs 

in DEA, based on the solution concept of Shapley 

value in cooperative game weighted by Shannon's 

entropy. This research includes the following: 

First efficient DMUs are identified as players in a 

cooperative game. A subset of these players is 

defined as coalition S. Then the sum of the 

efficiency of inefficient DMUs with respect to the 

production possibility set (PPS) which is made of 

inefficient DMUs and the member of coalition S, 

is defined as the characteristic function of the 

coalition S, which is used to determine the 

marginal effect of efficient DMUs in various 

coalitions. Ultimately, the Shannon's entropy and 

Shapley Value is utilized to determine the 

solution of the cooperative game, which in turn is 

used to rank efficient DMUs. 

The rest of this research includes: Section 

2 encompassing a brief introduction of DEA, 

game theory and Shannon entropy. Section 3, 

represents the proposed method. Section 4 

explains the proposed model by giving a real data 

example. Section 5 presents the conclusions of the 

research and suggestions. 

PRELIMINARIES 

Data envelopment analysis 

Assume that there are n independent 

Decision Making Units (DMUs). Each 𝐷𝑀𝑈j(j∈

{1, … ,𝑛}) uses m inputs 𝑥ij,𝑖 ∈ {1, … ,𝑚} to 

produce s output 𝑦rj، 𝑟 ∈ {1, … ,s}.Production 

Possibility Set (PPS) with the assumption of 

constant return to scale (CCR) is a set of (x,y) in 

which the input of x produce the output of y. 

 
n n

c j j
1 1

T (X,Y) | X λ , λ λ 0, 0, , } 1{ ,
 

      j j j
j j

X Y Y j n  

By adding the constraint ∑ 𝜆𝑗 = 1n
j=1  on the 

PPS, we arrive at PPS with variable return to 

scale situation (𝑇v). The efficiency of DMUs can 

be estimated by using the CCR model as follows: 
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θo is the efficiency of 𝐷𝑀𝑈𝑜 when the PPS is 

made by 𝐷𝑀𝑈1, … , 𝐷𝑀𝑈𝑛. If θo = 1𝑠𝑟
+ =

0, 𝑠𝑖
−=0, then 𝐷𝑀𝑈𝑜 is CCR efficient and which 

is also at the frontier of 𝑇c .If θo < 1, Thus 𝐷𝑀𝑈𝑜 

is CCR inefficient and inside of 𝑇c. Now by 

adding the constraint ∑ 𝜆𝑗 = 1n
j=1  to the CCR 

model, The BCC model (input orientation) is 

obtained. From the considerations above, the 

efficiency of all efficient DMUs is one, so there is 

no distinction among efficient DMUs.  

Cooperative games and Shapley value 

Consider a competitive situation in which 

there is a set of players. The players of the game 

can be competed in two ways: 

1) Non-cooperative game: the players play 

individually and payoff is personal. In this 

game, we are interested in knowing what 

strategy each player chooses to maximize 

his payoff.  

Cooperative game: in this game, it is predicted 

that players create a coalition to maximize their 

payoff. The cooperative games are identified by 

players and a characteristic function as 

<N,C(S)>. Suppose that coalition S is a subset 

of the players, the value of characteristic function 

C(S) as the payoff of players, is an achievement 

that the members of coalition S are sure will get, 

if they cooperate. It is clear that whatever the 

players of coalition achieve, should be fairly 

divided among them. 

Let’s assume imputation vector 

X={𝑥1, 𝑥2, … , 𝑥𝑛} be the prize of players 

e.g., 𝑥𝑖is the prize of the player i. The 

imputation vector should be a part of two 

conditions: 

1. C(N)=∑ 𝑥𝑖Group rationality𝑛
𝑖=1  

2. 𝑥𝑖 ≥ 𝐶({𝑖})Individual rationality 

       There are different solutions such as Kernel, 

Stable set, Core, Nucleolus and Shapley value to 

find a value of the imputation vector. Among the 

mentioned solutions  Shapley Value is more 

understandable and easy to interpret. 

This method has significant application in 

dividing the prize of the cooperative game.  

In the Shapley Value solution, the prize of the 

player i is computed as follows: 

   
       

S Nwhich i S

s 1 ! n s !
3

!  

 
  i         x  C S C S i

n
 

 

Shannon entropy 

Entropy is a well-known method to obtain the 

weights for amultiple attribute decision making 

(MADM) problem (Table 1), especially when 

obtaining a suitable weight based on the 

preferences and the experiments of the DMU is 

not possible. 

Table 1: Structure of the Alternative Performance 

 Criterion 1 Criterion 2 … Criterion n 

Alternative 1 X11 X12 … X1n 

Alternative 2 X21 X22 … X2n 

…
 

…
 

…
 

…
 

…
 

Alternative m Xm1 Xm2 … Xmn 

 W1 W2 … Wn 

The procedure of Shannon’s entropy can be 

expressed in the series of the following steps: 

S1: Normalize the decision matrix.  

 Set

 ij

ij m

ijj=1

x
n = , j=1,...,m, i=1,...,n 4

x
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         The row data are normalized to eliminate 

anomalies with different measurement units and 

scales. This process transforms different scales 

and units among various criteria into common 

measurable units to allow for comparisons of 

different criteria. 

S2: Compute entropy ie  as 

 
m

i 0 ij ij

j=1

e =-e n .ln n , i=1,...,n 5 

,where 0e  is the entropy constant which is equal to

 
-1

ln n , also 
ij ijn .ln n  is equals as 0 if

ijn =0 . 

S3: set 

 i id =1-e , i=1,...,n 6  

as the degree of diversification. 

                    S4: Set 

 i
i n

ss=1

d
w = , i=1,...,n 7

d
 

as the degree of importance of attribute i.  

       We should describe some basic definitions, 

terminology as well as a brief description of 

literature.  

USING SHANO'S ENTROPY AND 

SHAPLEY VALUE FOR RANKING 

EFFICIENT UNITS IN DEA 

In this section, we describe the combined 

approach of game theory and entropy for ranking 

efficient units in DEA. The proposed method 

entails distinguishing the efficient and inefficient 

DMUs by utilizing an appropriate model (CCR or 

BCC). The efficiency is computed and DMUs are 

divided to two classes, efficient and inefficient. 

        

   j j

j j

|θ 1 8

{ | θ 1}.

E DMU

N DMU

 

 
 

The current method defines the characteristic 

function of a coalition as follows: 

If S is a subset of efficient DMUs, then the 

characteristics function of the coalition S,  in 

which its value is the payoff of members of 

coalition S, is defined as follows:  

   . 9s
t

t N

C   S θ


   

C(S) is the sum of efficiency of inefficient DMUs, 

where PPS is constructed of all inefficient DMUs 

and efficient DMUs of coalition S and θt
s is 

defined as follow:  
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       N is a set of inefficient DMUs and S is the 

subset of efficient DMUs. Moreover, the payoff 

of the efficient members of the coalition S 

alongside the efficient unit of k where k∉ 𝑆 is as 

follows: 

                                                                                   

      . 11
s k

t
t N

C S k θ




    

𝜃𝑡
𝑠∪{𝑘}

is the efficiency of the inefficient unit of t

where PPS is made by inefficient DMUs, the 

whole number of efficient DMUs acquired the 

coalition S and the efficient unit of k , as 

follows: 
 

  
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j N S k
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If S is a grand coalition, then the C(S) is the sum 

of efficiency of inefficient units when PPS is 

formed by all the DMU's. If S is empty coalition, 

then C(S) is the sum of efficiency of inefficient 

units where PPS is made of the inefficient DMUs. 

      In the next step, the marginal effect of an 

efficient DMU on the efficiency of the inefficient 

DMUs is determined. Marginal effect of the 

efficient unit of k in changing the sum of 



Iranian Journal of Optimization, 14(1), 39-49, March 2022    

 

44 
 

Fallahnejad et al/ An Entropy Based Shapley… 

/ Presenting a Mathematical … 

efficiency of inefficient DMUs is defined as 

follows:  

To arrive at a marginal effect of a DMU in 

coalition S (S is a subset of efficient DMUs): 

First, the sum of efficiency of inefficient units in 

PPS which is made of inefficient units and the 

members of coalition S (𝐶(𝑆)) and the sum of 

efficiency of inefficient units in PPS that is made 

of inefficient units and the members of coalition 

S and the 𝐷𝑀𝑈𝑘𝐶(𝑆 ∪ {𝑘})is measured. The 

difference between 𝐶(𝑆) and 𝐶(𝑆 ∪ {𝑘}) is 

defined as  

        13  S EP k C S C S k  

By adding a new DMU, the PPS expands or stays 

unchanged so, the efficiency of inefficient units 

becomes smaller or remains unchanged, from 

which it follows that the defined marginal effect 

is always greater than or equal to zero. As much 

as the marginal effect of an efficient unit in a 

coalition is greater, the DMU has an important 

role in the coalition. 

    It is reasonable to evaluate kDMU  contribution 

in the entire game as the weighted aggregation of 

marginal contribution to coalitions which include 

k. From the above considerations, the 

proportional Shapley value which is a aggregation 

of marginal effects weighted by Shannon's 

entropy can be considered. 

     In this paper we compute all orderings 

(permutations) of players and evaluate their 

marginal contribution to the coalition. We also 

illustrate the importance of each permutations by 

using the weights based on the entropy. For this 

purpose, we should consider each permutation as 

a criterion in an MADM problem. Thus, we have 

the proportional Shapley value of each player as 

the entropy based aggregation of the marginal 

contributions. Finally the Shannon's based 

Shapley value 𝜑kas a solution of cooperative 

game for ranking efficient DMUs is applied. 

 
 k

 i

φ ((Entropy weight of per i)*  Marginal effect of   in per i )


 kDMU   

(14) 

The greater the value of 𝜑k , the higher the rank 

of 𝐷𝑀𝑈𝑘. 

The ranking procedure based on Shapley value 

and Shannon's entropy consists of following 

steps: 

Step 1: Taking multiple inputs and multiple 

outputs. estimate the efficiency of DMUs 

by using a DEA model (CCR model (2), 

BCC or another DEA model). 

Step 2: Classification DMUs in efficient set E 

and inefficient set N.  

Step 3: Defining the characteristic function of 

coalition S by (9) 

Step 4: Finding the marginal effect of efficient 

DMU in coalition S using (9)-(13) 

Step 5: Constituting all permutations.  

Step 6: Normalizing the permutation table by (4) 

Step 7: Computation the entropy for each 

permutation by (5) 

Step 8: Computing the degree of diversification 

(6) 

Step 9: Obtaining the importance of each 

permutation by (7) 

Step 10: Calculating the weighted Shapley value 

for each efficient DMU by (14). 

Step 11: Ranking Efficient DMUs by the values 

of step 10. The greater the value, the higher the 

rank.  

To illustrate the proposed method, consider the 

following numerical example. Suppose that there 

is a collection of seven DMUs with one input and 

one output (Table 2). According to BCC model, 

the DMUs of 1, 2, 3 and 4 are efficient. 

 

Table2: Input, output and the efficiency of DMUs 

θBCC Output Input  

1 1 1 DMU1 

1 2 2 DMU2 

1 4 4 DMU3 

1 5 6 DMU4 

0.50 2 4 DMU5 

0.43 3 7 DMU6 

0.17 0.5 6 DMU7 
 

Considering this four DMUs as players of a 

cooperative game, to rank the efficient DMUs, the 

proposed method in this paper, which is based on 

Shannon entropy and Shapley value, is used. 
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Thus, the Shapley value of each DMU has been 

computed by utilizing its marginal effect. In the 

first column of Table 4 all possible coalitions of 

efficient units were collected. In the columns 2-5, 

the marginal effect of DMUs in different 

coalitions is given. Also, in Table 5 using PPS of 

inefficient DMUs and efficient DMUs of 

coalition S,  the  efficiency of inefficient units are 

shown, clearly the sum of foregoing is C(S). 
Similarly, the efficiency of inefficient units was 

computed with PPS of inefficient DMUs and 

efficient DMUs of coalition S and 𝐷𝑀𝑈𝑗, the sum 

of foregoing is C(SU{j}). It is defined C(x) - 

c(SU{j})  as the marginal effect of efficient, if the 

difference between C(S) and C(SU{j}) added to 

the coalition S. 

     If 𝐷𝑀𝑈3 is added to S={} (Fourth column, 

second row, table 3), then in the obtained PPS  

which is made by inefficient units and S={}, both 

𝐷𝑀𝑈5 and 𝐷𝑀𝑈6 are efficient and the 𝐷𝑀𝑈7 

with the efficiency 𝜃7 = 0.6667 is inefficient. 

    By adding 𝐷𝑀𝑈3 to the coalition S={}, the PPS 

which is also made by inefficient units and S={}, 

the 𝐷𝑀𝑈3 and 𝐷𝑀𝑈5 are remained efficient,  the 

𝐷𝑀𝑈6 with the amount of efficiency 𝜃6 =
0.5714 becomes inefficient and the amount of the 

efficiency of 𝐷𝑀𝑈7  changes to  𝜃7 = 0.6666. 

Therefore, the marginal effect of adding 𝐷𝑀𝑈3  to 

the coalition S={} is as  follows: 
{}(3)

(1 1 0.6667) (1 0.5714 0.6666)

0.4287

EP

     



 

Now, in the Table 3 if  3DMU is added to 

S={1}, (Fourth column, third row) in the 

resulting PPS  which is  made by inefficient units 

and S={1}, both 𝐷𝑀𝑈5  and  𝐷𝑀𝑈6 are efficient 

and 𝐷𝑀𝑈7 with the efficiency of 𝜃7 = 0.1667 is 

inefficient. 

    On the hand,  in the  obtained PPS making by 

inefficient units, S={1} and  3DMU ,  it is shown 

that 5DMU  with the efficiency value  of 

5 0.5000     and 6DMU  with amount 

6 0.4286     are  inefficient, but  the  efficiency 

of 7DMU  with the value 7 0.1667   is 

remained. Hence, the marginal effect of adding  

3DMU  to the coalition S={1} is given as 

follows: 
{1}

(1 1 0.1667) (0.5000 0.4286 0.1667)

(3)

1.0714

EP

    



 

       In the Table 3, Fourth column, seventh row, 

if 𝐷𝑀𝑈3 is added to S={1,2}, then  in the 

resulting PPS which is made by the inefficient 

units and S={1,2},  it is seen that the 𝐷𝑀𝑈6 is 

efficient, 𝐷𝑀𝑈5   and 𝐷𝑀𝑈7  are inefficient with 

the efficiency values of 𝜃5 = 0.5 and 𝜃7 =
0.1667, respectively. 

Now, by adding  the 𝐷𝑀𝑈3 to the coalition 

S={1,2}, the resulting PPS made by inefficient 

units, S={1,2} and 𝐷𝑀𝑈3, the efficiency of 

𝐷𝑀𝑈5 remains at 𝜃5 = 0.5 , the efficiency of 

𝐷𝑀𝑈7 remains at 𝜃7 = 0.1667 and finally the 

 𝐷𝑀𝑈6 with the amount  value of efficiency 

𝜃6 = 0.4286  becomes inefficient. Therefore, the 

marginal effect of adding 𝐷𝑀𝑈3 to the coalition 

S={1,2} is computed as follows: 
{1,2}(3)

(0.5 1 0.1667) (0.5000 0.4286 0.1667)

0.5714

EP

     



 

Table3: The marginal effect of efficient DMUs in all possible coalitions 

DMU4 DMU3 DMU2 DMU1 Coalition 

0.3333 0.4287 0.8334 0.5 {} 

0.9375 1.0174 0.5 0 {1} 

0.5238 0.5719 0 0.1666 {2} 

0 0 0.9761 1.1427 {3} 

0 0.0954 1.0239 1.1042 {4} 

0.5238 0.5714 0 0 {1,2} 

0 0 0 0 {1,3} 
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0 0.1339 0.0863 0 {1,4} 

0 0 0 0.1666 {2,3} 

0 0.0476 0 0.1666 {2,4} 

0 0 0.9761 1.1427 {3,4} 

0 0 0 0 {1,2,3} 

0 0.0476 0 0 {1,2,4} 

0 0 0 0 {1,3,4} 

0 0 0 0.1666 {2,3,4} 

   Now we consider all the orderings including all 

the efficient players. These data are shown in 

Table 4. Each  efficient unit in the columns 3 to 6, 

represents the marginal contribution of that 

efficient unit to its entry the coalition. To 

aggregate the values of each column as the 

Shapley value, we first obtain an entropy weight  

for any permutation in each row. The values of 

entropy, the degree of diversification and degree 

of importance of permutation i are all listed as the 

weights  for aggregation in  the columns 7, 8 and 

9 in the Table 4. Using Equation (14), the 

Shapley value is obtained for each of the 

efficient units. The rank corresponding to 

each unit is also given in the last line. 

Table 4: Permutations, marginal effects, entropy, weighted Shapley value, and ranking 

 Permutation A B C D Entropy 

Degree of 

diversificatio

n 

Weights 

1 A←B←C←D 0.5 0.5 0.57 0 0.791067 0.208933 0.023561 

2 A←B←D←C 0.5 0.5 0.05 0.52 0.868909 0.131091 0.014783 

3 A←C←B←D 0.5 0 1.07 0 0.451356 0.548644 0.061869 

4 A←C←D←B 0.5 0 1.07 0 0.451356 0.548644 0.061869 

5 A←D←B←C 0.5 0.08 0.05 0.94 0.672999 0.327001 0.036875 

6 A←D←C←B 0.5 0 0.13 0.94 0.633202 0.366798 0.041363 

7 B←A←C←D 0.16 0.84 0.57 0 0.674605 0.325395 0.036694 

8 B←A←D←C 0.16 0.84 0.05 0.52 0.752447 0.247553 0.027916 

9 B←C←A←D 0.16 0.84 0.57 0 0.674605 0.325395 0.036694 

10 B←C←D←A 0.16 0.84 0.57 0 0.674605 0.325395 0.036694 

11 B←D←A←C 0.16 0.84 0.05 0.52 0.752447 0.247553 0.027916 

12 B←D←C←A 0.16 0.84 0.05 0.52 0.752447 0.247553 0.027916 

13 C←A←B←D 1.14 0 0.43 0 0.423492 0.576508 0.065011 

14 C←A←D←B 1.14 0 0.43 0 0.423492 0.576508 0.065011 

15 C←B←A←D 0.16 0.98 0.43 0 0.635938 0.364062 0.041054 

16 C←B←D←A 0.16 0.98 0.43 0 0.635938 0.364062 0.041054 

17 C←D←A←B 1.14 0 0.43 0 0.423492 0.576508 0.065011 

18 C←D←B←A 0.16 0.98 0.43 0 0.635938 0.364062 0.041054 

19 D←A←B←C 1.11 0.08 0.05 0.33 0.601913 0.398087 0.044891 

20 D←A←C←B 1.11 0 0.13 0.33 0.562116 0.437884 0.049379 

21 D←B←A←C 0.16 1.03 0.05 0.33 0.683029 0.316971 0.035744 

22 D←B←C←A 0.16 1.03 0.05 0.33 0.683029 0.316971 0.035744 

23 D←C←A←B 1.14 0 0.1 0.33 0.530642 0.469358 0.052928 

24 D←C←B←A 0.16 0.98 0.1 0.33 0.743088 0.256912 0.028971 

Weighted Shapley value 0.574 0.411 0.377 0.206 - - - 

Rank 1 2 3 4 - - - 
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REAL DATA EXAMPLE 

   In this section, we use the proposed method for 

ranking 18 DMUs. The data are extracted from 

the reference [27] are shown in Table 5.  

 

Table5: Coalitions and the marginal effects 

Coalitions DMU 2 DMU 6 DMU 10 

{2} 0.62 0 0 

{6} 0 1.14 0 

{10} 0 0 0.84 

{2,6} 2.23 2.75 0 

{2,10} 1.46 0 1.68 

{6,10} 0 0.55 0.25 

{2,6,10} 2.41 1.5 0.43 

The efficiency values obtained from the 

implementation of the CCR model are listed in 

column 7. Accordingly, units 2, 6, and 10 are 

efficient units and the rest are inefficient. To rank 

the efficient units, according to the proposed 

method, we find the marginal shares of the units 

in 6 permutations including these efficient units  

in Table 6. By forming all the permutations, we 

find the weighted result of the entropy method or 

the weighted Shapley value. The results show that 

units 2, 6, and 10 have ranks of 1, 2 and 3, 

respectively. 

Table 6: Permutations, marginal effects, entropy, weighted Shapley value, and ranking for real data example 

DMU Coalition DMU 2 DMU 6 DMU 10 Entropy Degree of 

diversification 

Weights 

1 2←6←10 0.62 2.75 0.43 0.560068 0.439932 0.217976 

2 2←10←6 0.62 1.5 1.68 0.738359 0.261641 0.129637 

3 6←2←10 2.23 1.14 0.43 0.664034 0.335966 0.166464 

4 6←10←2 2.41 1.14 0.25 0.598017 0.401983 0.199173 

5 10←2←6 1.46 1.5 0.84 0.770465 0.229535 0.113729 

6 10←6←2 2.41 0.55 0.84 0.650802 0.349198 0.17302 

Weighted Shapley  1.64976 1.47647 0.67376    

Rank 1 2 3    

CONCLUSION 

In this research, a method based on the concept of 

game theory for ranking was introduced. In the 

mentioned method, different PPSs including all 

inefficient units and different coalitions of 

efficient units were constructed. Development of 

the proposed method for ranking groups including 

units, use of entropy for weighting of other 

cooperative game methods, definition of marginal 

effect of efficient units based on theirs impact on 

the entropy of efficiencies of inefficient units in 

different PPS, use of interval and fuzzy entropy 

for ranking efficient units in the presence of 

imprecise data can be considered for future 

studies. 
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