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Numerical Optimal Control of The Wave Equation

Department of Mathematics, Payame Noor University, Tehran, Iran

Abstract
In this paper, we present a spectral method for approximating the

boundary optimal control problems of a well-known wave equation
by the linear optimal control problems.  The method is based upon
constructing the Mth degree interpolation polynomials, using
Chebyshevs nodes, to approximate the wave equation. Necessary
conditions for optimal control functions are obtained by using the
Pontryagin's maximum principle. Moreover, the control parameter-
ization enhancing technique (CPET) is used to obtain the piecewise
constant sub-optimal control functions.  Finally, the efficiency of
the proposed method is confirmed by a numerical example.
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INTRODUCTION 
Consider a one-dimensional wave equation

(1)
with the initial conditions,

(2)

and the boundary conditions,

(3)

and the end conditions,

(4)

where       and       are measurable control func-
tions which are assumed to be constrained as

(5)

Consider the problem of minimizing the func-
tional

(6)

subject to  the constraints (1)-(5).
Optimal control problems of linear distributed

parameter systems have been studied by many
authors (Kamyad et al., 1991; Sakawa et al.,
1999). A full discretization method based on the
appropriate finite differences is used to solve a
special case of this problem by Gerdts et al.
(2008), where the functions s1 and s2 in the end
conditions (4) are taken to be zero, the final timeτ is fixed and there are no constraints (5) on the
control functions. Therefore, the problem consid-
ered in this paper is more general than the prob-
lem considered by Gerdts et al. (2008). Zarei and
Bahrmand (2014) obtained an explicit solution
for equations (1)-(3) and proposed a numerical
method to solve a multi-objective optimal control
of the wave equation. Optimal boundary control
of the wave equation is studied by Farahi et al.

(1996), using a measure theoretical approach.
Moreover, the optimal control problems for the
wave equation are studied by Manita (2008).  

The spectral methods as an effective tool, have
been used to solve the optimal control problems
for lumped (Elnagar and Razzaghi, 1997) and, in
recent years, distributed parameter systems
(Chen et al., 2011(a); 2011(b); Zarei, 2015).  In
this paper, we use a spectral method to minimize
the functional (6) subject to the constraints (1)-
(5). The method is outlined in the next section.
In section III, the distributed parameter system
(1)-(4) is approximated by a lumped parameter
system and the necessary conditions for optimal
controls are derived, when p=1,2. The control pa-
rameterization enhancing technique (CPET) to
obtain the sub-optimal control functions in piece-
wise constant form is outlined in section IV.  Sec-
tion V includes the numerical results. The last
section is devoted to the conclusion.

THE PROPOSED METHOD
Let                               denotes the Chebyshev

polynomial of degree M, then the collocation
points 

(7)

are the zeros of  .                                       The
Mth degree interpolation polynomials to u(x,t) is
given by 

(8)

where �j s are the Lagrange polynomials that

Let                 denotes the Chebyshev derivative
matrix defined by
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where,                                                          . 

Then                        is the second order Cheby-
shev derivative matrix which is used to compute
the values of the function                    at the
Chebyshev nodes                                  as

(9)

In the next section we approximate the equa-
tions (1)-(4) by a linear control system, applying
the proposed method.

OPTIMAL CONTROL FORMULATION
In order to use the Chebyshev nodes we intro-

duce the transformation                       .  In this 

way the equations (1)-(4) convert to

(10)
with the initial conditions,

(11)
and the end conditions,

(12)
and the boundary conditions,

(13)

where          . We approximate the equations
(10)- (12) by

(14) 

(15)

(16)

Substituting the equations (8) and (9) into the

equations (14)-(16), we get a system of linear
second order differential equations as

(17)

(18)

(19)

Moreover, from the equation (13) 

we have ; therefore, the equations (17)-(19) can
be written in the matrix form as

(20)

(21)

(22)
where,

a(t)=(a1(t),…,aM-1(t))T, v(t)=(v1(t) ,v2(t))T, ai =
(u1(x1),…, u1(xM-1))T,  = (u2(x1),…, u2(xM-1))T,  af

= (s1(x1),…, s1(xM-1))T and df= (s2(x1),…, s2(xM-

1))T.
Setting   the control system (20)-(22) can be

written as the following first order linear control
system 

(23)

(24)
where,

and   .

Minimum energy Problem
As a minimum energy problem (MEP), we first

consider the objective functional (6) with p=2. In
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order to obtain the necessary conditions for the
optimal controls                                    and the op-
timal time τ* we define the Hamiltonian as

(25)

According to the Pontryagin's maximum prin-
ciple (Kirk, 1970), we should have

(26)

for all control functions υ1 and υ2 satisfying the
constraint (5), where b*(t) and a*(t) are the solu-
tions of (23)-(24) corresponding to v*(t) and λ1*

and λ2* are the costate variables which satisfy

(27)

(28)

The partial derivatives of the Hamiltonian with
respect to                     are zero. Since  

we have ,                                where  

the jth column of B. is to determine an
explicit expression for the optimal controls, we
consider the following three cases. (i)  If   

, then                               . 

(ii) If                             , then                   .

(iii) If                             , then                   . 

Combining these three cases gives 

(29)

Minimum fuel Problem
Setting p=1 in functional (6), leads to the min-

imum fuel problem (MFP). Assume that the
bounds on the control functions in (5) are such
that          and             .  The Hamiltonian function
for this problem is  

(30)

According to the Pontryagin's maximum prin-
ciple, the optimal controls                                    and
the corresponding states   b*(t) and  a*(t) satisfy

(31)

for all control functions υ1 and υ2 satisfying the
constraint (5), where λ1* and λ2* are the costate
variables which satisfy 

the equations (27)-(28).  From (31), it is con-
cluded that

(32)

Moreover, since H is explicitly independent of
t and the final time τ is free, we also know that
(See Kirk (1970) for more details)

(33)

According to the equation (32), a singular in-
terval to exist it is necessary that λ1*(t)Bj is to be
either +1 or -1 during a time interval [t1,t2]. This
implies that λ1*(t)Bj=0, t∊ [t1,t2]. Hence, from the
equation (27) we have λ2*(t)Bj=0, t∊[t1,t2].
Clearly, this condition occurs if λ2*(t)=0 for
t∊[t1,t2]. But, this cannot happen, because from
the equations (27)-(28) we obtain λ1*(t)=λ2*(t)=0,
t∊[0,τ]; hence,  from the equation  (33)  we ob-
tain v1*(t)=v2*(t)=0, for t∊[0,τ], which means that
the optimal control functions do not affect the
system at all. We have a similar situation when
Bj=0.  So, we consider the case that λ2*(t) is
nonzero for any t∊[t1,t2]. Form the equations
(27)-(28) we have , and hence  twice
differentiating the equation λ2*(t)Bj=0 gives
λ2*(t)CBj=0. Similarly, twice differentiating the
equation  λ2*(t)CBj=0 gives λ2*(t)C2Bj=0. Contin-
uing this pattern gives

(34)

Obviously, if the equation (34)  is to be satis-
fied, the matrix 
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(35)

must be singular.  Therefore, if the matrices  
, j=1, 2 are nonsingular,

then there are no singular intervals and the opti-
mal controls are completely determined by (32).

We note  that the optimality systems of the
MEP and the MFP contain the state system (23)
with the boundary conditions (24),  the  costate
system (27)-(28), together with the expressions
(29) and (32) for the control functions and a com-
plicated nonlinear equation for the optimal  timeτ* as 

(36)

where, H is the corresponding Hamiltonian
function.   Due to difficulties in solving the opti-
mality systems of the MEP and the MFP, in the
next section we directly use the control parame-
terization enhancing technique (CPET) to opti-
mize the functional (6) subject to the constraints
(5) and (23)-(24). The CPET introduced by Lee
et al. (1997) maps all the switching points of the
original problem onto the set of integers, so that
the time of the switching points can be accurately
determined.

CONTROL PARAMETRIZASION
ENHANCING TECHNIQUE

Using the CPET, an optimal control problem
can be approximated by an optimal parameter se-
lection problem which can be solved efficiently
by the software package MISER3 (Jennings et
al., 1997).

CPET1 for MEP
In order solve the MEP we set

and we assume that the control functionυ has a piecewise constant form as:

(37)

where N is the number of control subintervals
and             is the characteristic function for the
interval          .  We note that              and      are                  

the decision variables characterizing υ

where,                                   . Substituting the
function (37) into (6) and (23)-(24) gives the fol-
lowing optimal control problem:

Minimize                                                         (38)

Subject to 

(39)

(40)

It has been proved that                               
where υN* is the optimal solution of (38)-(40)

and (τ*,υ*) is the optimal solution of MEP satis-
fying the optimality conditions (29)  and  (36)
(See chapter 6 of Teo et al. (1999)).  Now, we re-
late the new time variable t∊[0,τ) to the original
time variable   through the ordinary differential
equation  

(41)

where                        is a new nonnegative piece-
wise constant function defined by

(42)

with                   ; hence,               ,k=1,…,M. 

Let                     . Under the CPET transforma-
tion,  the problem (38)-(40) becomes:

Minimize                                                             (43)

Subject to  

(44)

(45)

CPET2 for MFP 
For the MFP, we use the CPET for optimal dis-

crete-valued control problems introduced by Lee
et al. (1999). To this end, we assume that the con-
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trol variable can take values in  
According to the necessary conditions for the
nonsingular optimal controls given by (32, we
have                                                    ; hence, m=9. 
In this technique, we construct a set             N=nm
where                                                           , …,  

…,              and we seek a control
function in the form of (37). Therefore, in this
case   is now determined only by tj, j= 1,2,...N.
Moreover, we use the time scale control (42) to
relate the new time variable s∊[0,M) to the orig-
inal time variable   through the ordinary differ-
ential equation (41) where βk=tk-tk-1.  Following
a procedure similar to CPET1, we obtain an op-
timal parameter selection problem  as 

Minimize                                          (46)
Subject to  

(47)

(48)

Note that the unknowns in problem (46)-(48)

are only βk, k=1,...,N , while in problem (38)-(40)
αk, k=1,...,N are also unknowns.  Obviously, the
CPETs introduced in this paper lead to the opti-
mal parameter selection problems, which can be
solved by the optimal control software MISER 3.

NUMERICAL RESULTS
As a numerical example, we consider a prob-

lem with ℓ=100, α=1,                     ,  ,   ,  

u2(Z)=0,                           ,  s2(Z)=0, kj=-1, σj=1,  

j=1,2.
In our implementation we set M=10. Fig. 1 and

Fig. 2, respectively, show the optimal boundariesυj*, j=1,2 and the corresponding optimal state
uM(x,t) for the MEP obtained by CPET1 with
N=10.  The optimal value for objective functional
(6) obtained by CPET1 is J(τ*, υ1*,υ2*)=23.3801
which is corresponding to τ*=147.1297. The op-
timal controls obtained by the CPET2 with n=5
and the corresponding optimal state uM(x,t) are
depicted in Fig. 3 and Fig. 4, respectively.  More-
over, the value of objective functional (6) result-
ing by CPET2 is J(τ*, υ1*,υ2*)=58.1754 which is
corresponding to τ*=50.8477.
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Fig. 1.  Control functions v1(- - -) and v2(–) for MEP
obtained by CPET1.

Fig. 2.  uM(x,t) for MEP obtained by CPET1.



CONCLUSION
In this paper, we approximated the boundary

optimal control problem of the wave equation by
a linear optimal control problem using a spectral
method. When the objective functions indicate
the minimum energy problem and the minimum
fuel problem, the necessary optimality conditions
are obtained.  Moreover, the control parameteri-
zation enhancing technique is used to obtain the
sub-optimal control functions in piecewise con-
stant form. The numerical results confirmed the
capability of the proposed method for solving the
boundary optimal control problem of the one-di-
mensional wave equation.
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Fig. 1.  Control functions v1(- - -) and v2(–) for MEP
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Fig. 2.  uM(x,t) for MEP obtained by CPET2.
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