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Abstract
There exist large varieties of conjugate gradient algorithms. In order

to take advantage of the attractive features of Liu and Storey (LS) and
Conjugate Descent (CD) conjugate gradient methods, we suggest
hybridization of these methods in which the parameter βk is computed
as a convex combination of βkLS and βkCD respectively which the
conjugate gradient (update) parameter was obtained from Secant equa-
tion. The algorithm generates descent direction and when the iterate
jam, the direction satisfy sufficient descent condition. We report
numerical results demonstrating the efficiency of our method. The
hybrid computational scheme outperform or comparable with known
conjugate gradient algorithms. We also show that our method converge
globally using strong Wolfe condition.
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INTRODUCTION
A Conjugate Gradient (CG) method is designed

to solve a nonlinear unconstrained optimization
problem, min f(x),x∈ℝn                                                    (1)

where f:ℝn→ ℝ is a smooth nonlinear function.
There exist many different methods to solve (1)
(Bartholomew-Biggs, 2005; Necedah & Wright,
2006). Here we are interested in CG method,
which have low memory requirement and local
and global convergence properties (Djordjevic,
2017).

The iterative formula of a CG method is given
by x0 ∈ ℝnxk+1=xk+sk αk dk ,k=0,1,…        (2)

where      is a steplength to be computed by line
search procedure and     is the search direction
defined by

(3)

where,                  and βk is a scalar called CG
(update) parameter, often computed by perform-
ing some inner products (Babaie-Kafaki, 2011).
Different CG schemes correspond to different
values of the scalar parameter βk.

In general, two classes of CG schemes exist;
there are some strengths and weaknesses for the
CG schemes in each class (Babaie-Kafaki, 2011;
Babaie-Kafaki, 2013; Babaie-Kafaki,

Ghanbari & Mahdavi-Amiri, 2010). The
schemes with common numerator                  have
better practical performance, but may not always
be convergent (Babaie-Kafaki & Ghanbari,
2014). These schemes were initially proposed by
Hestenes and Stiefel (HS) (1952), Polak, Ribie‘re
and Polyak (PRP) (1967), Liu and Storey (LS)
(1991) with the following CG parameters respec-
tively:

(4)

Numerical experiments show that the CG
schemes with common numerator ‖gk+1‖2 have
strong global convergence properties, but they
may have modest practical performance due to
jamming (Andrei, 2008c, 2008a). These schemes
were earlier proposed by Fletcher and Revees
(FR) (1964), Fletcher (Conjugate Descent (CD))
(1987), and Dai and Yuan (DY) (1991) with the
following CG parameters respectively:

(5)

where ‖.‖ denotes Euclidean norm and definesk =xk+1 -x_k and yk =gk+1 - gk (Dai & Yuan,
2001).

To improve the behavior of these schemes and
to avoid jamming (Djordjevic, 2017), researchers

were interested in combining CG schemes of
the two groups (Babaie-Kafaki & Mahdavi-
Amiri, 2013).

Moreover, convergence analysis and imple-
mentation of the conjugate gradient algorithms,
when αk is one dimensional minimizer along dk
often requires line search αk to be exact (Rao,
2009):

(6)

or satisfy standard Wolfe conditions. However,
in practice, an exact line search is not usually
possible and any value of αk satisfies certain con-
ditions is accepted (Hager & Zhang, 2006; No-
cedal & Wright, 2006; Touati-Ahmed & Storey,
1990):

(7)

(8)

where 0<c1<c2<1, dk is a descent direction
(Babaie-Kafaki & Ghanbari, 2014). On the other
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hand, strong Wolfe conditions consist of (7) and

(9)

The difference between schemes with common
numerator ‖gk+1‖2 with other choices

for the update parameter in theory is that the
global convergence theorems only require

the Lipchitz assumption, not the boundedness
assumption (Hager & Zhang, 2006). The poor
practical performance of FR method is related to
jamming (Powell, 1984). If a bad direction and a
tiny step from xk-1 and xk are generated, then the
next direction dk and the next step αk are also
likely to be poor unless a restart along the gradi-
ent direction is made (Babaie-Kafaki, Fatemi &
Mahdavi-Amiri, 2011). In spite of such a defect
Zoutendijk (1970) proved that the FR method
with exact line search is globally convergent on
general functions; Al-Baali (1985) extended this
result to an in-exact line search (Hager & Zhang,
2006). However, the schemes with the common
numerator   possess an automatic approximate
restart feature which addresses jamming problem
(Babaie-Kafaki, 2013). More exactly, when the
step sk is small, the factor yk in the numerator
tends to zero. Therefore, βk becomes small and
the new search direction dk+1 is approximately
the steepest descent direction -gk+1 (Andrei,
2008b, Andrei, 2009a). In general, the perform-
ance of this method is better than the perform-
ance of the methods with ‖gk+1‖2 in the
numerator of βk but their convergence is uncer-
tain (Hager & Zhang, 2006; Powell, 1984).

The CD scheme is closely related to FR scheme
with exact line search, βkFR=βkCD. One important
difference between FR and CD methods is that
with CD, the sufficient descent holds for a strong
Wolfe line condition (the constraint c<1/2 that
stand up with FR, is not needed for CD). More-
over, for a line search that satisfies the general-
ized Wolfe conditions with c1<1 and c2=0, it can
be shown that CD scheme is globally convergent
(Hager & Zhang, 2006). Djordjevic (2017)
pointed out that no much research has been done
on the choice βkLS, except for the work of Liu and
Storey (1991), but we expect that the techniques
developed for the analysis of the PRP method
should be applied to the LS method (Hager &

Zhang, 2006). Similarly, for an exact line search,
the LS scheme is also identical to PRP (Dai,
2001).

A large number of hybrid conjugate gradients
techniques were proposed (Babaie-Kafaki, Ghan-
bari & Mahdavi-Amiri, 2010). These algorithms
dynamically adjust the formula for βk as the iter-
ation evolves (Hager & Zhang, 2006). The idea
is to use projections which are mainly proposed
in order to avoid jamming (Andrei, 2008c,
2008a). Among them: (e.g. see also Andrei,
2008a; Andrei, 2009a; Babaie-Kafaki, Fatemi &
Mahdavi-Amiri, 2011; Babaie-Kafaki & Mah-
davi-Amiri; 2013; Dai, 2001,   Dai & Yuan, 2001;
Gilbert & Nocedal, 1992;  Hu & Storey, 1991; Li
& Fukushima, 2001; Liu & Storey, 1991; Sabiu
& Waziri, 2017; Sabiu, Waziri & Idris, 2017;
Touati-Ahmed & Storey, 1990;  Yuan,1991). The
excellent contributions of Andrei and Babaie-
Kafaki on hybridization using convex combina-
tion and that of Djordjevic motivated us to extend
their approaches to access and combine the
strength of the LS and CD CG update parame-
ters. This paper is organized as follows: Next sec-
tion presents the proposed method. Convergence
results are presented in Section 3. Some numeri-
cal results are reported in Section 4. Finally, con-
clusions are made in Section 5.

CONVEX COMBINATION HYBRID CG
METHOD

We briefly discuss Hybrid Conjugate Gradient
(HCG) of Babaie-Kafaki and Ghanbari (2014) in
addition to Liu and Storey with Conjugate De-
scent Convex Combination (LSCDCC) of Djord-
jevic (2017) methods. HCG obtained two CG
parameters from standard and scaled secant equa-
tions to avoid storing and computing Hessian
matrix, where the parameters are computed as a
convex combination of βkHS and βkDY while
LSCDCC obtained the hybrid parameter from
conjugacy condition which is globally conver-
gent using strong Wolfe conditions. The hybrid
parameter is computed as a convex combination
of βkLS and βkCD. The hybrid parameters θk of
these algorithms are computed as a proper con-
vex combination. In order to achieve global con-
vergence for general function, HCG adopted
non-negative restriction of the CG parameter,
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while the other hybrid parameter is globally con-
vergent for uniformly convex function. On the
other hand, no much research has been done on
the choice of βkLS CG parameter except for the
work of Djordjevic (2017) and Liu & Storey
(1991), and the fact that the most essential secant
equation is the standard secant equation moti-
vated this work.

In this section, we combine the CG update pa-
rameters proposed by Liu and Storey

(1991) with Fletcher (1987) conjugate descent
as hybrid conjugate gradient method based on
Convex Combination of LS and CD using Secant
Equation (CLCS) as follows:

(10)

From equation (4) and (5)

(11)

where θk is the hybridization scalar parameter
satisfying θk∈[0,1]. It is obvious that if θk≤0, setθk=0, then βkCLCS= βkLS and if θk≥0, set  θk=1,
then βkCLCS=βkCD. On the other hand, if 0<θk<1,
then βkCLCS is a proper convex combination of βkCD
and βkLS. Therefore, from relation (3) we obtain

(12)

If xk+1 is close to x*, then it is important to note
that, the direction to follow is Newton’s

direction:

(13)

Equating (12) and (13) and after some algebra
we have

(14)

However, for large scale problems, choices for
the update parameter that do not require evalua-
tion of the Hessian matrix is often require (Ding,
Lushi & Li, 2010). Therefore, in order to have an
algorithm for solving large scale problems, we
assume pair of (sk, yk) satisfies the standard se-
cant equation ∇2 f(xk+1) sk=yk (Sun & Yuan,
2006; Zhang & Xu, 2001); (14) becomes:

(15)

Obviously, from (12) our direction can be jus-
tified as:

(16)

We can write (16) as:

(17)

It follows from (17), that

(18)

(19)

where, we have

(20)

So, (19) can be considered as quasi-Newton di-
rection in which the inverse Hessian matrix in
each iteration is approximated by matrix Qk+1.
Therefore, the direction (19) is an approximation
of the Newton direction.
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CLCS algorithm
Step 1. Initialization. Select x0∈Rn and param-

eter 0<c1<c2<1. Compute f(x0) and g0.
Consider d0=-g0 and set α0=1. 

Step 2. Test for Continuation of Iterations. If‖gk ‖∞≤10-4, then stop.

Step 3. Line Search. Compute αk>0 satisfying
Wolfe conditions (7) and (9) and update the vari-
ables, xk+1=x_k+ αk dk . Compute f(xk+1),  gk+1
and  sk = xk+1-xk , yk =gk+1-gk.
Step 4. Computation of θk. If (gk+1T gk ))(skT

yk)=0, then set θk=0; otherwise, compute θk
by (15).

Step 5. Computation of βkCLCS. If  0<θk<1, then
compute βkCLCS by (10). If θk≥1, then setβkCLCS=βkCD. If θk≤0, then set βkCLCS=βkLS.
Step 6. Computation of Search Direction.

Compute d=-gk+1+βkCLCS sk . If restart criterion
of Powell|gk+1T g_k |>a‖gk+1 ‖2,  where a=0.2

(21)

is satisfied, then set dk+1=-gk+1; otherwise, de-
fine dk+1=d. Compute αk, setk=k+1 and go to step 2.

CONVERGENCE ANALYSIS
To state the convergence result of hybrid CG

method CLCS, the following definitions and
basic assumptions are necessary:

Definition: Search direction satisfies descent
directions (or equivalently, satisfy the decent
condition) if an only ifdkT gk<0, (22)

and also satisfies sufficient descent condition if
and only if dkT gk<-c‖gk ‖2,∀k≥0, (23)

where c is positive constant.

Boundedness Assumptions: Assumption 3.1.
The level set S={x∈R∶f(x)≤f(x0 )}, with x0 to be
the starting point of CG methods (2) and (3) is
bounded from below. That is, there exist a posi-
tive constant B such that‖x‖≤B,∀ x∈S.                        (24)

Lipchitz Assumptions: Assumption 3.2. In a
neighborhood N of S, the objective

function  f is continuously differentiable and its
gradient ∇f  is Lipchitz continuous on

N that is, there exist a constant L>0 such that‖∇f(x)-∇f(y)  ‖  ≤L ‖x-y‖, for all x,y∈N.

Under Assumption 3.1 and Assumption 3.2 on
f, there exist a constant Γ such that‖∇f(x)‖  ≤Γ,                           (25)

for all  x∈S (Andrei, 2009b).
Lemma1. Let f∈⊂(Rn). Let dk be a descent di-

rection in the point xk, and suppose
that the function  f is bounded from below

along direction {xk+αdk⃓ α>0}. Then if0<c1 <c2<1 , there exist the intervals inside
which the step size satisfies (7),(8) and

(9) (Nocedal & Wright, 2006).

Theorem 1. Consider iteration of the form (2)
and algorithm (9), assume that αk

satisfies (7) and (9). If 0<c1 <c2<1 , then dk+1
given by (12) is a descent direction.

Theorem 2. Djordjevic (2017). Let Assump-
tions 3.1 and 3.2 hold. Let constant a in the algo-
rithms CLCS be such that 0<a<1/c1 -1 .                    (26)

Then the algorithms CLCS is well defined dk
and satisfies the (23) for all k.

Proof: From Lemma 1, we know that Step 2 of
the algorithms CLCS is well defined

if dk is a descent direction. We shall show thatdk satisfies the sufficient descent condition, and
that will yield dk as a descent direction. For k=0,
it holds d0=- g0, so g0T d0=-‖gk ‖2, and that can
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be concluded that (23) holds for k=0.
Next is to show that it holds for k>0.dk+1 =-gk+1 +βkCLCS sk. (27)

Obviouslydk+1=-gk+1 +((1-θk)  βkLS +θk βkCD)sk.  
(28)

We can writedk+1=-(θk gk+1)+(1-θk ) gk+1 +((1-θk)βkLS+θk βkCD))sk.
(29)

It follows thatdk+1=θk (-gk+1 + βkCD sk)+(1-θk )(-gk+1 βkLS sk.)
(30)

Where we havedk+1=θk dk+1CD (1-θk) dk+1LS. 
(31)

Pre-multiply (31) by gk+1T, we getgk+1T dk+1=θk gk+1T dk+1CD+(1-θk) gk+1T dk+1LS.
(32)

Firstly, let θk=0, then  dk+1=dk+1LS. Remember
that dk+1LS =-gk+1 +βkLS sk.⇒gk+1T dk+1≤-‖gk+1‖2+(gk+1T yk )(gk+1T sk)/(-gkT sk).

(33)

For (33) to satisfy sufficient descent condition,
we have ≤μ‖gk+1 ‖2, where 0<μ<1.

So thatgk+1T dk+1LS≤-‖gk+1 ‖2+μ‖gk+1 ‖2,

andgk+1T dk+1LS≤-(1-μ)‖gk+1 ‖2.
We denote  K1=(1-μ): then we can writegk+1T dk+1LS≤-K1 ‖gk+1 ‖2.                  (34)

We are done with θk=0.
Now, let θk=1, then dk+1= dk+1CD.
Further, we are going to prove that (23) holds

for CD method in the presence of (7)
and (9), and this fact is mentioned in [26]. 

For k = 0, the proof is a trivial one, having in
view that d0CD=- g0, so g0T d0CD=-‖gk ‖2, and that
can be concluded that (23) holds for k=0.

Having in view thatdk+1CD=-gk+1+ βkCD sk .             (35)

Pre-multiply (35) by gk+1T, we get

(36)
Where from (36)

Using (7) and (9), it is obvious that

Now we havegk+1T dk+1CD≤-(1-c2) ‖gk+1‖2.
We denotes (1-c2)=K2>0. gk+1T dk+1CD≤-K2 ‖gk+1‖2. (37)

Now suppose that 0<a1<θk <a2<1. From (32),
we conclude that



gk+1T dk+1≤a1 gk+1T dk+1CD+(1-a2 ) gk+1T dk+1LS.
(38)

Denote K=a1 K1 (1-a2 ) K2 ; then we finally getgk+1T dk+1≤-K‖gk+1‖2 . (39)

Global convergence analysis
For any conjugate gradient method with strong

Wolfe line search, the convergence holds. But,
for general function, only weak form of the Zou-
tendijk condition is needed (Dai and Liao, 2001):

Lemma 2. Let Assumptions 3.1 and 3.2 hold.
Consider the method (2), (3) where dk is a de-
scent direction and αk satisfies (7) and (9). If

(40)

then

(41)

A CG method converges globally if gk=0 for
some k or (41) holds.

Theorem 3. Consider the iterative method, de-
fined by CLCS algorithms . Let dk+1 be a descent
direction, then either gk=0, for some k, or

(42)

The proof is using contradiction, that theorem
(3) is not true.

Proof: Let gk≠0, for all k. Suppose on the con-
trary, that (42) does not hold, which means the
gradient is bounded away from zero. Then there
exist a constant c>0, such that‖gk ‖≥c. (43)

Let D be the diameter of the level set S. So,
from (10) we have‖βkCLCS ‖≤ |βkLS |+|βkCD|,             (44)

but from (25), it holds that

Because ‖sk ‖ ≤D, it means that

(45)

Using theorem (2), we know that for LS
method, the sufficient descent condition holds,
so it is possible to satisfy (7) and (9).

Now we are to prove that there exist α*>0, such
that  αk≥α* >0 , for all k.

Suppose, on the contrary, that there do not exist
any α* , such that αk≥α* >0. Then there exist an
infinite sub-sequence α* =βjk, k∈K1 such that

(46)

then

That is,

But, from Armijo line search, we getf(xk+βjk dk )- f(xk)≤ c1 βjk gkT dk,          (47)f(xk+βjk-1 dk )- f(xk)> c1 βjk-1 gkT dk.      (48)

Remember that c1<1. From (48), we have

(49)

But, using relations (46) and from (49), we con-
clude that gkT dk≥c1 gkT dk. (50)

But, LS method satisfies (23), so gkT dk≤0.
Also, c1<0. So, the relation (50) is true only ifgkT dk=0. Then, from (8), we get gk+1T dk=0
which is an exact line search, a contradiction.

Now, we can write
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|-gkT sk |=|-αk gkT sk |≥|-α* gkT sk | . 

From (45), using (23) in |-gkT sk |, we get

(51)

From (43), we get

(52)

Since dk+1LS =-gk+1 +βkLS sk.
we get‖dk+1LS ‖  ≤‖gk+1 ‖+|βkLS |  ‖sk ‖. (53)

Using (25), (52) and ‖sk ‖≤D, we get

(54)
Also using (25) in (35) we get‖dk+1CD ‖  ≤‖gk+1‖+|βkCD |  ‖sk ‖≤Γ+|βkCD|  D.

(55)
So that

(56)

We conclude that (22) and (23) hold for CD
method too, so, analogically, we can get

(57)

So,

(58)

Applying (52) and (58) on (31), we find that

(59)

Therefore,

(60)

So, applying Lemma (1), we conclude that

(61)

This is a contradiction of (43), so we have
proved (42).

NUMERICAL RESULTS
In this section, we present the computational

performance of CLCS and compare with
that of LSCDCC of Djordjevic (2017) and

HCG method of Babaie-Kafaki and Ghanbari
(2014). To implement the hybridize CG parame-
ters, the codes were written in Matlab 8.3
(R2014a) and run on a personal computer 2.20
GHz CPU processor and 3.0 GB RAM memory
and tested on a set of 250 unconstrained opti-
mization problems. The test problems are the un-
constrained problems in (Andrei, 2008b) and
(Gould, Orban & Toint, 2003). Since CG
schemes are mainly designed to solve large-scale
unconstrained optimization, we select 25 prob-
lems in extended or generalized form. Each prob-
lem is tested 10 times for a gradually increasing
number of variables: 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000 and 100000 with
summary of the numerical results has shown in
Table 1. All the algorithms were implemented on
a strong Wolfe line search conditions withc1=0.0001 and c2= 0.001 and the step length is
computed with initial trail value αk =1. The same
stopping criterion ‖gk‖ ∞≤〖10〗-4 is used. All the
test functions were minimizing from standard
starting points.

Numerical results were compared based on
number of iterations and CPU time. In some
cases, the computation stopped due to failure of
the line search to find the positive step size, and
thus it was considered a failure. In addition, we
considered a failure if the number of iterations
exceeds 10000 or CPU time exceeds 500 (Secs).
fig. 1-2 show the performance of these methods
using the profiles of Dolan and Mor´e (2002).
The P(τ) is the fraction of problems with per-
formance ration τ, thus, a solver with high valuesP(τ) or at the top right of the figures are prefer-



able. That is, for each method, we plot the frac-
tion or percentage P(τ) of the problems for
which the method is within a factor versus time
τ, the best time for each algorithm. The left side
gives the percentage of the test problems of the
method that is fastest. The right side gives the
percentage of the test problems that are success-
fully solved by each method. The interpretation
of fig. 1 shows that the probability of CLCS
method is the winner on a given problem is 62%
while LSCDCC and HCG methods win 44% and
15% percentages respectively, when the factor τ

is chosen within the interval 0 < τ < 0.5. Clearly,
CLCS method has the most wins, because it has
the highest probability of being closer to the op-
timal solution. However, if we extend our τ of in-
terest to τ≥0.5, CLCS and HCG algorithms
solved the test functions in a given time and
reach 88% respectively, while LSCDCC method
is 85% to. It is easy to see that the performance
of CLCS and HCG algorithms are comparable
and computationally efficient than LSCDCC
scheme.
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CLCS HCG LSCDCC

SUCCESSFUL
101 20 33 CPU TIME
197 177 178 NO. OF ITERATION

NOT SUCCESSFUL
119 200 180 CPU TIME
23 36 35 NO. OF ITERATION

FAILURE
30 30 37 CPU TIME
30 37 36 NO. OF ITERATION

TOTAL
250 250 250 CPU TIME
250 250 250 NO. OF ITERATION

Table 1: Summary of Numerical Results of CLCS, LSCDCC and HCG Methods

Fig. 1. CPU time performance profile for CLCS, HCG and LSCDCC schemes.



Since the CPU time is often affected by the en-
vironment of computer such as the busy or free
task status and the operating system, we further
make a comparison among the three methods
with the number of iterations. fig 2, shows that
the fraction of CLCS method is the winner on a
given problem with 82% while LSCDCC and
HCG methods win 79% and 72% percentages re-
spectively, when the factor τ is chosen within the
interval 0<τ<0.5. Clearly, CLCS method has the
most wins, because it has the highest probability
of being closer to the optimal solution. However,
if we extend our τ of interest to τ ≥ 0.5, CLCS
and HCG algorithms solved the test functions in
a given number of iterations and reach 88% re-
spectively, while LSCDCC method is 85%, it is
easy to see that the performance of CLCS and
HCG algorithms are computationally efficient
than LSCDCC scheme.

CONCLUSION
Numerous studies of CG methods led to new-

varieties of conjugate gradient algorithms. How-
ever, we have presented new hybrid conj gate
hybrid algorithms in which the parameter βk is
computed as a convex combination of βkLS and

βkCD. The hybrid parameter was obtained based
on secant equation and compared with LSCDCC
conjugate gradient method proposed by Djordje-
vic and HCG proposed by Babaie-Kafaki and
Ghanbari. Numerical results show that our
scheme and HCG algorithm are comparable and
outperform LSCDCC scheme. The algorithm
converge globally using strong Wolfe condition.
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S/No Functions
1 Extended White & Holst
2 Extended Rosenbrock
3 Extended Freudenstein & Roth
4 Extended Beale
5 Raydan 1
6 Extended Tridiagonal 1
7 Diagonal 4
8 Extended Himmelblau
9 Extended Powel 1
10 Fletcher Function (Cute)
11 Extended Powel
12 Nonscomp Function (Cute)
13 Extended Denschnb Function (Cute)
14 Extended Quadratic Penelty Qp1
15 Hager
16 Extended Maratos
17 Shallo
18 Generalized Quartic
19 Quardratic Qf2
20 Generalized Tridiagonal 1
21 Generalized Tridiagonal 2
22 Power
23 Quadratic Qf1
24 Extended Quadratic Penelty
25 Extended Penalty

Appendix
List of Test Functions


