

Optimization

Iranian Journal of Optimization Volume 12, Issue 2, 2020, 203-211 **Research** Paper

Online version is available on: www.ijo.iaurasht.ac.ir

A New Eight-Order Iterative Method for Solving Nonlinear Equations with High Efficiency index

Mohammed Yusuf Waziri 1* and Kabir Saminu²

¹ Department of Mathematical Sciences, Faculty of Science, Bayero University Kano Kano, Nigeria

² Department of Mathematics, School of General Studies, Dr. Yusufu Bala Usman College Daura, Katsina Katsina, Nigeria

Received: 29 September 2019 Abstract Accepted: 20 December 2020

Keywords: Eight-order convergence Nonlinear equations Weigth function Efficiency index

In this paper, we develop a new eighth-order method for simple roots of non-linear equations via weight function and interpolation methods. The method requires only three (3) function evaluation and a derivative evaluation with $81/4 \approx 1.682$ efficiency index. Numerical comparison between the proposed method with some other methods were presented, which shows that our method is promising.

^{*}Correspondence E-mail: mywaziri.mth@buk.edu.ng

INTRODUCTION

One of the attractive area of numerical analysis is solving nonlinear equations. Mostly iterative method are used to find the solution of nonlinear equation. Throughout this paper, we consider iterative method to find a simple root α , i.e $f(\alpha) =$ 0 and f '(α) 6= 0 of a nonlinear equation

$$f(x) = 0 \tag{1}$$

where $f : D \in R \rightarrow R$ which is defined on an interval D. Newton method is probably the most widely used iterative method for finding the solution of (1) via

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k \doteq 0, 1, 2, \dots$$
(2)

where f '(xk) is the first order derivative. It is well known (Traub,1997) that the Newton method is quadratically convergent and requires only two (2) functions evaluation for each iteration step.

In the recent years, many new modified methods have been proposed to improve the convergence order and efficiency index of the classical iterative methods (Zhao et.al., 2012) There are some classical iterative methods such as Newton's method, Ostrowki's method (Ostrowsk,1973) which is defined by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - \frac{f(x_n)}{f(x_n) + (f(x_n) - 2f(y_n))} \frac{f(y_n)}{f'(x_n)} \end{cases}$$
(3)

Chebyshev-Halley method (Gutierrez et al., 1997) which is defined by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - [1 + \frac{1}{2} \frac{Lf(x)}{1 - \alpha Lf(x)}] \frac{f(x_n)}{f'(x_n)} \\ where Lf(x) = \frac{f''(x_n)f(x_n)}{f'(x_n)} \end{cases}$$
(4)

and Jarratts method (Argyros et al., 1994), which is defined by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - \left[1 - \frac{3}{2} \frac{f'(y_n) - f'(x_n)}{3f'(y_n) - f'(x_n)}\right] \frac{f(x_n)}{f'(x_n)} \end{cases}$$
(5)

In addition, Chun and Ham (2007), Construct a fourth order modification of Newton's method for solving nonlinear equations. The method required two evaluation of the function and one of it's first derivative per iteration which is given by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - \frac{2f(x_n) + (2\beta - 1)f(y_n)}{2f(x_n) + (2\beta - 5)f(y_n)}, where \ \beta \in R \end{cases}$$
(6)

Moreover, Jishe Feng (2009), obtained a new two-step iterative method for solving nonlinear equations which is define by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - \frac{f(y_n)}{2f'(x_n) - f'(y_n)} \end{cases}$$
(7)

Khattri and Argyros (2010) Contribute a new iterative method for convergence order four for solving nonlinear equations given by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} = y_n - \frac{f(y_n)}{\alpha f'(x_n) + (1-\alpha) \frac{f(y_n) - f(x_n)}{y_n - x_n}} \end{cases}$$
(8)

Chun and Ham (2007) developed a family of sixth-order methods by weight function methods, which is written as:

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ z_n = y_n - \frac{f(x_n)}{f(x_n) - 2f(y_n)} \frac{f(y_n)}{f'(x_n)} \\ x_{n+1} = z_n - H(\mu_n) \frac{f(Z_n)}{f'(x_n)} \\ . \end{cases}$$
(9)

where $\mu_n = \frac{f(y_n)}{f(x_n)}$ H(t) represent a real valued function with H(0) = 1,H '(0) = 2,H ''(0) < ∞

Petkovic (2009) Construct a three point iterative method for solving nonlinear equations. It's order of convergence reached eight with only four functions evaluation. Per iteration , which means that the proposed method posses as high as possible computational efficiency in the sense of the Kung-Traup hypothesis (1974).

$$\begin{cases} y = x - \frac{f(x)}{f'(x)} \\ z = y - p(t) \frac{f(y)}{f'(x)}, \ t = \frac{f(y)}{f(x)} \\ x_{n+1} = z - \frac{f(z)}{f'(z)} \end{cases}$$
(10)

Zhao et.al. (2012) constructed a new family of eight-order methods for solving simple roots of nonlinear equations.

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \\ z_n = y_n - G(\mu_n) \frac{f(y_n)}{f'(x_n)}, \\ x_{n+1} = z_n - H(v_n) \frac{f(z_n)}{f[x_n, z_n] + f[y_n, z_n] - f[x_n, y_n]} \\ where \ \mu_n = \frac{f(y_n)}{f(x_n)} \ and \ v_n = \frac{f(z_n)}{f(x_n)} \end{cases}$$
(11)

Ababneh (2016) proposed a new fourth order iterative methods second derivative free for solving nonlinear equations given by

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \\ x_{n+1} = y_n - 2\frac{f(y_n)}{f'(x_n)} + \frac{f(y_n)(f(x_n) + (\beta - 2)f(y_n)}{f'(x_n)(f(x_n) + \beta f(y_n))} \\ (\frac{f(y_n)}{f'(x_n)})^2, \\ - \frac{f'(x_n)f(y_n)}{f(x_n)(f(x_n) + \beta f(y_n))} \end{cases}$$

where
$$\beta \in \mathbb{R}$$
 is a constant and n=0,1,2,...

METHOD AND CONVERGENCE ANALYSIS

In this section, we present a new eight order iterative method for solving nonlinear equation via weight function and Newton interpolation.

Let $f : R \to R$ is eight times continuously differentiable on an interval $D \in R$ and has a simple zero $\alpha \in D$.

Consider the two point iterative method that was constructed by Ababneh (2016). In order to improve the convergence of (12), we added one Newton step and our proposed method is given as:

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \\ z_n = y_n - 2\frac{f(y_n)}{f'(x_n)} + \frac{f(y_n)(f(x_n) + (\beta - 2)f(y_n)}{f'(x_n)(f(x_n) + \beta f(y_n))} - \frac{f'(x_n)f(y_n)}{f(x_n)(f(x_n) + \beta f(y_n))} \\ (\frac{f(y_n)}{f'(x_n)})^2, \\ x_{n+1} = z_n - \frac{f(z_n)K(t_n)H(u_n)}{2(f[x_n, z_n] - f[x_n, y_n]) + f[y_n, z_n] + \frac{y_n - z_n}{y_n - x_n}(f[x_n, y_n] - f'(x_n))} \end{cases}$$
(13)

where
$$t_n = \frac{f(y_n)}{f(x_n)}$$
 and $u_n = \frac{f(z_n)}{f(x_n)}$ The convergence analysis of the proposed method is presented in the following theorem.

Theorem1: Assume that the function f, K and H are sufficiently differentiable and f has a simple zero $\alpha \in D$. If the initial point x0 is sufficiently close to α , then the method defined in (13) converges to α with eight-order under the following conditions:

$$K(0) = -1, K'(0) = 0, K''(0) = 2, and K'''(0) = 0$$

 $H(0) = -1, H'(0) = 0, and H''(0) = 0$
Proof:

Consider the Taylor expansion of the function f(xn) around α is given by

$$f(x_n) = f(\alpha) + \frac{1}{1!} f'(\alpha)(x_n - \alpha) + \frac{1}{2!} f''(\alpha)(x_n - \alpha)^2 + \frac{1}{3!} f'''(\alpha)(x_n - \alpha)^3 + \dots + \frac{1}{8!} f^{(8)}(\alpha)(x_n - \alpha)^8 + o(x_n - \alpha)^9$$
(14)

Let $en = xn - \alpha$ be the error in n^{th} iteration with the assumption that $f(\alpha) = 0$ and $f0(\alpha) = 0$, then we have

$$f(x_n) = f'(\alpha)[e_n + c_2e_n^2 + c_3e_n^3 + c_4e_n^4 + c_5e_n^5 + c_6e_n^6 + c_7e_n^7 + c_8e_n^8 + o(e_n^9$$
(15)

and

(12)

$$f'(x_n) = f'(\alpha)[1 + 2c_2e_n + 3c_3e_n^2 + 4c_4e_n^3 + 5c_5e_n^4 + 6c_6e_n^5 + 7c_7e_n^6 + 8c_8e_n^7 + 9c_9e_n^8 + o(e_n^9)]$$

where
$$c_n = \frac{f^{(n)}(\alpha)}{n!f'(\alpha)}$$
 for n=2,3,4,... (16)

$$\frac{f(x_n)}{f'(x_n)} = e_n - c_2 e_n^2 + 2(c_2^2 - c_3) e_n^3 + (7c_2c_3 - 4c_2^3 - 3c_4) e_n^4 - + 2(3c_3^2 - 10c_2^2c_3 + 5c_2c_4 + 4c_2^4 - 2c_5) e_n^5 + (-16c_2^5 - 28c_2^2c_4 + 17c_3c_4 + 52c_2^3c_3 - c_2(33c_3^2 - 13c_5) - 5c_6) e_n^6 + o(e_n^7)$$

Let en,y = yn - α be the error in yn iteration where $y_n = x_n - \frac{f(x_n)}{f'(x_n)}$ and en = $x_n - \alpha$ then we have

also finding the Taylor expansion of f(yn) and simplifying it we have

$$f(y_n) = f'(\alpha)[e_{n,y} + c_2 e_{n,y}^2 + c_3 e_{n,y}^3 + c_4 e_{n,y}^4 + c_3 e_{n,y}^3 + c_4 e_{n,y}^4 + c_5 e_{n,y}^5 + c_6 e_{n,y}^6 + c_7 e_{n,y}^7 + c_8 e_{n,y}^8 + o(e_{n,y}^9)]$$
(17)

substituting Eq. 15,16 and 17 in zn above at 13 then

$$e_{n,z} = (4c_2^3 + 2\beta 3_2 - c_2c_3)e_n^4 + (12\beta c_2^2 c_3 - 26c_2^4 - 19\beta c_2^4 - 2c_2c_4 - 2\beta^2 c_2^4 + 26c_2^2 c_3 - 2c_3^2)e_n^5 + o(e_n^6)$$

but $en, z = zn - \alpha$ which is the error in the second point zn

and

$$z_n = y_n - 2\frac{f(y_n)}{f'(x_n)} + \frac{f(y_n)(f(x_n) + (\beta - 2)f(y_n))}{f'(x_n)(f(x_n) + \beta f(y_n))} - \frac{f'(x_n)f(y_n)}{f(x_n)(f(x_n) + \beta f(y_n))} \left(\frac{f(y_n)}{f'(x_n)}\right)^2$$

therefore we have the error equation in z_n as

$$\begin{split} e_{n,z} &= [2(2+2\beta)c_2^3 - c_2c_3]e_n^4 + [-(26+\beta(19+2\beta))c_2^4 + \\ &+ 2(13+6\beta)c_2^2c_3 - 2c_3^2 - 2c_2c_4]e_n^5 + o(e_n^6) \end{split}$$

similarly for $f(z_n)$ we get

$$f(z_n) = f'(\alpha)[e_{n,z} + c_2e_{n,z}^2 + c_3e_{n,z}^3 + c_4e_{n,z}^4 + c_4e_{n,z$$

$$\cdot c_5 e_{n,z}^5 + c_6 e_{n,z}^6 + c_7 e_{n,z}^7 + c_8 e_{n,z}^8 + o(e_{n,z}^9)]$$
(18)

In addition, we also expand the two (2) weight functions $K(t_n)$ and $H(u_n)$ in the neighbourhood of 0 by Taylor expansion as shown below

$$K(t_n) = K(0) + \frac{1}{1!}K'(0)t_n + \frac{1}{2!}K''(0)t_n^2 + \frac{1}{3!}K'''(0)t_n^3 + O(t_n^4)$$
(19)

and

$$H(u_n) = H(0) + \frac{1}{1!}H'(0)u_n + \frac{1}{2!}H''(0)u_n^2 + O(u_n^3)$$
(20)

next, is to find tn and un which is given by

$$t_n = \frac{f(y_n)}{f(x_n)} \quad \text{and} \quad u_n = \frac{f(z_n)}{f(x_n)}$$
$$t_n = c_2 e_n + (-3c_2^2 + 2c_3) + (8c_2^3 - 10c_2c_3 + 3c_4)e_n^3 + o(e_n^4)$$
(21)

$$un = (4c32+2\beta c32-c2c3)e3n+(-30c42+12\beta c22c3-2c2c4-21\beta c42-2\beta 2c42-2c23+27c22c3)en4+o(e5n)$$
(22)

where tn and un are obtained by dividing $\frac{f(y_n)}{f(x_n)}$ and $\frac{f(z_n)}{f(x_n)}$ respectively substituting equations (15)-(22) into the proposed method then we have the error equation given by:

$$en+1 = (-c32c3+2\beta c52+4c32)e6n+(-2\beta 2c62-50c62) -6c22c3-2c32c4+48c42c3+20\beta c42c3-31\beta c6) -6c22c3-2c32c4+48c42c3+20\beta c42c3-31\beta c6) -2e7n+(217c32c23-593c52c3+348c72) -24\beta 2c25c3+80\beta c32c23-348\beta c52c3) -3c32c5-21c22c3c4+33\beta 2c72+75c^{4}2c_{4}+259\beta c_{2}^{7}+30\beta c_{2}^{4}2c_{4}+2\beta^{3}c_{2}^{7}-12c_{2}c_{3}^{3})e^{8}n + o(e^{9}n)$$

It can be rewrite as

$$e_{n+1} = c_6 e_n^6 + c_7 e_n^7 + c_8 e_n^8 + o(e_n^9)$$
(24)

setting c6 and c7 to zero we have $c6 = 4c32 + 2\beta c52 - c32c3 = 0$ $c6 = [2(2 + \beta)c52 - c32c3] = 0$

$$c_6 = [2(2+\beta)c_2 - c_2c_3][1 - K(0)H$$
(25)

implies that, H(0) = -1 and K(0) = -1 similarly $c7 = -2\beta 2c62 - 50c62 - 6c22c3 - 2c23c4 + 48c42c3 + 20\beta c42c3 - 31\beta c62 = 0 c_7 = \beta[(-2\beta - 31)c^2_2 + 20c_3]c^{24} + 2(24c_3 - 25c^2_2)c^4_2 - 2(3c^2_3 + c4)c^3_2 = 0$ $c_7 = \beta[(-2\beta - 31)c^2_2K'(0) + 10c_3(2 - K'(0))]c^4_2 + 2(24c_3 - 25c^2_2)c^4_2H'(0) - 2(3c^2_3 + c4)c^3_2H''(0) = 0$ (26)

The Eq. 25 and 26 are obtained by setting c6 and c7 to zero on the error equation of the proposed method based on the condition of theorem 1 in order to have the exact eight convergence

Implies that, K'(0)=0, K''(0)=2, H'(0)=0and H''(0)=0, then the error equation becomes

$$en+1 =$$

$$(217c32c23-593c52c3+348c72-24\beta2c52c3+8)$$

$$0\beta c23c23-348\beta c52c3-3c32c5-21c22c3c4+33)$$

$$\beta 2c72+75c^{4}_{2}c_{4}+259\beta c^{7}_{2}+30\beta c^{4}_{2}c_{4}+2\beta 3c^{2}_{7}-12c_{2}c^{3}_{3})e^{8}_{n}$$

$$(27)$$

therefore

$$e_{n+1} = [(217 + 80\beta)c^{3}2c^{2}3 - (593 + 348\beta + 24\beta^{2})c52c3 + (348 + 259\beta + 33\beta^{2} + 2\beta^{3})c^{7}2 + (75 + 30\beta)c^{4}2c_{4} - 21c^{6}2c_{3}c_{4} - 3c^{3}2c_{5} - 12c_{2}c^{2}3]e^{8}n + o(e_{n}^{9})$$

$$(28)$$

which is error equation of the proposed method.

This show that the convergence order of our proposed method is eight for any real value of the

parameter β

Due to the above theorem 1, we can select the two (2) weight functions K(tn) and H(un) arbitrary as follows:

$$K(t_n) = 1 + 2(3+\beta)t_n^2, H(u_n) = 1 + 3u_n^2$$
(29)

$$K(t_n) = 1 + \frac{6+2\beta}{1+3t_n^2}, H(u_n) = \frac{1+4u_n^2}{1+u_n^2}$$
(30)

$$(t_n) = \frac{1 + 2t_n - 3\beta t_n^2}{1 + 4t_n + 8t_n^2}, H(u_n) = 4 - \frac{3}{1 + u_n^2}$$

NUMERICAL RESULTS

In this section, we test the performance of our proposed method using (29), (30) and (31) named KS1, KS2 and KS3 respectively with existing eight order method. These are compare with existing eight order methods such as:(i) Thukral and Petkovic (TPM) (Thukral & Petković, 2010).

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)} \\ z_n = y_n - \frac{f(y_n)}{f'(x_n)} \frac{f(x_n) + bf(y_n)}{f(x_n) + (b-2)f(y_n)} \\ x_{n+1} = z_n - \frac{f(z_n)}{f'(x_n)} [Q(\frac{f(y_n)}{f(x_n)}) + v(x_n, y_n, z_n)] \end{cases}$$
(32)

where
$$Q(\frac{f(y_n)}{f(x_n)}) = \frac{f(x_n)^2}{f(x_n)^2 - 2f(x_n)f(y_n) - f(y_n)^2}$$

 $v(x_n, y_n, z_n) = \frac{f(z_n)}{f(y_n) - 9f(z_n)} + 4\frac{f(z_n)}{f(x_n)}$

and Q(0) = 1, Q '(0) = 2, Q ''(0) = 10 - 4b, Q '''(0) = 12b2 - 72b + 72 (ii) (Bi et al., 2009) (BEM):

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \\ z_n = y_n - h(u_n) \frac{f(y_n)}{f'(x_n)} \\ x_{n+1} = z_n - \frac{f(x_n) + (\gamma + 2)f(z_n)}{f(x_n) + \gamma f(z_n)} \frac{f(z_n)}{f(z_n, y_n] + (z_n - y_n)f[z_n, x_n, x_n]} \end{cases}$$
(33)

where $\gamma \in \mathbb{R}$ is constant $u_n = \frac{f(y_n)}{f(x_n)}$ and h(t) represents a real valued function with h(0) = 1, h '(0) = 2, h ''(0) = 10 and h '''(0) < ∞ and (iii) Solimit to 1, 2018)

(iii) Salimi et al., 2018):

$$\begin{cases} y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \\ z_n = y_n - 2\frac{f(y_n)}{f'(x_n)} + \frac{f(y_n)(f(x_n) + (\beta - 2)f(y_n)}{f'(x_n)(f(x_n) + \beta f(y_n))} - \frac{f'(x_n)f(y_n)}{f(x_n)(f(x_n) + \beta f(y_n))} \\ (\frac{f(y_n)}{f'(x_n)})^2, \\ x_{n+1} = z_n - \frac{f(z_n)\eta(t_n)\psi(u_n)}{f[z_n, y_n] + (z_n - y_n)f[z_n, x_n, x_n]} \end{cases}$$
(34)

with weight function

$$\begin{split} \eta(t_n) &= 1 - 4(2+\beta)t_n^3, \psi(u_n) = 1 + 2u_n\\ \eta(t_n) &= 1 - \frac{4\beta+8}{1+2t_n}t_n^3, \psi(u_n) = \frac{1+3u_n}{1+u_n},\\ \eta(t_n) &= \frac{1+t_n - 4\beta t_n^3}{1+t_n + 8t_n^3}t_n^3, \psi(u_n) = 3 - \frac{2}{1+u_n}, \end{split}$$

Where $t_n = \frac{f(y_n)}{f(x_n)}$, $u_n = \frac{f(z_n)}{f(x_n)}$, and $\beta \in \mathbb{R}$

We apply the methods to solve some benchmark test functions drawn from (Chun & Ham, 2007).

 $f_1(x) = x3 + 4x2 - 10$ α =1.3652300134140968457608068290 and $x_0 = 1$ $f_2(x) = x^2 - ex - 3x + 2$, *α*=0.25753028543986076045536730494 and $x_0 = 0$ $f_3(x) = xex2 - sin2(x) + 3cos(x) + 5$, α =1.2076478271309189270094167584 and $x_0 = -1$ $f_4(x) = sin(x)ex + log(x2 + 1), \alpha = 0$ and $x_0 = 2$ $f_5(x) = (x-1)3 - 2$ α =2.2599210498948731647672106073 and $x_0 = 3$ $f_6(x) = (x+2)ex - 1$, $\alpha = -0.44285440100238858314132800000$ and $x_0 = 2$ $f_7(x) = sin 2(x) - x2 + 1$, α =1.4044916482153412260350868178 and $x_0 = 2$ where α is a root $f_k(x) = 0$ for $k = 1, 2, \dots, 7$ and x_0 is an initial approximation.

The numerical results reported here have been carried out in Matlab R2014a to test our proposed methods KSD1,KSD2,and KSD3 and also compare them with methods TPM,BEM, SNSP1, SNSP2 and SNSP3. We terminate the iteration when ever |f(xn)| < 10-7

Table 1 and 2 shows the difference of the root α and the approximate xn . The absolute values of the function |f(xn)|, number of iteration and the computational order of convergence (COC) is also calculated in the tables. Where the COC is defined by (Weerakoon & Fernando, 2000).

$$\rho \approx \frac{\ln|(x_n+1-\alpha)/(x_n-\alpha)|}{\ln|(x_n-\alpha)/(x_n-1-\alpha)|}$$

DISCUSSION

The results presented in the Tables 1 and 2 shows that our methods KSD1, KSD2 and KSD3 converges more rapidly than some methods proposed by TPM, BEM, SNSP1, SNSP2, and SNSP3. It also shows that the new methods introduced in this paper have at least equal performance in terms of number of iteration when compared to the other existing eight-order methods. The total number of function evaluation in each iteration are almost the same expect on functions f3 and f6.

CONCLUSION

A new eight-order iterative method for solving nonlinear equations with high efficiency index have been constructed for approximating a simple root of a given nonlinear equation. The method uses only four functions evaluation in each iteration and a numerical comparison with some other known method shows that our proposed method have higher convergence order.

Waziri and Saminu /A New Eight-Order Iterative...

METHODS	β	$ x_n - \alpha $	$ f(x_n) $	ITERATION	COC
		$f_1(x) = x^3 + 4x^2$	2 - 10, x0 = 1		
TPM	1	2.6581e-12	4.3896e-12	4	8.0000
BEM	-1	1.4943e-13	2.4656e-12	3	8.0000
SNSP1	-1	3.6429e-9	6.015e-8	3	8.0000
SNSP2	0	3.6492e-91.8385e-	6.0261e-8	3	8.0000
SNSP3	1	9	3.0360e-8	3	8.0000
KSD1	-1	3.3799e-13	5.5813e-12	3	8.0000
KSD2	0	6.6041e-13	1.0905e-12	3	8.0000
KSD3	1	1.6667e-13	2.7522e-12	3	8.0000
		$f2(x) = x^2 - e^x - e^$	3x + 2, x0 = 1		
TPM	1	1.6881e-12	6.3787e-12	3	8.0000
BEM	0	5.6510e-14	2.1360e-13	2	8.0000
SNSP1	-1	1.7388e-13	6.5713e-13	3	8.0000
SNSP2	0	1.7390e-13	6.5721e-13	3	8.0000
SNSP3	1	8.6921e-14	3.2836e-13	3	8.0000
KSD1	-1	4.2386e-18	7.4303e-17	3	8.0000
KSD2	0	4.2350e-18	7.4317e-17	3	8.0000
KSD3	1	2.0446e-18	7.72660e-17	3	8.0000
		$f3(x) = xex - \sin 2(x) + \frac{1}{2}$	$+3\cos(x)+5, x0$	= -2	
TPM	1	5.3260e-12	1.0816e-10	7	8.0000
BEM	1	2.8089e-12	5.7040e-11	6	8.0000
SNSP1	-1	2.01130e-12	4.0877e-11	6	8.0000
SNSP2	0	1.4648e-12	2.9746e-11	6	8.0000
SNSP3	1	6.5533e-13	1.3310e-11	6	8.0000
KSD1	-1	1.3895e-12	2.8219e-11	6	8.0000
KSD2	0	7.0329e-15	1.4440e-13	6	8.0000
KSD3	1	1.3838e-15	2.6520e-14	6	8.0000
		$f4(x) = \sin(x)e^{x} + la$	$\log(x^2 + 1), x_0 = 2$		
TPM	1	5.4499e-13	5.4500e-13	5	8.0000
BEM	-1	2.9273e-14	2.9000e-14	4	8.0000
SNSP1	-1	9.4697e-9	9.4698e-9	3	8.0000
SNSP2	0	1.7737 e-8	1.7737 e-8	3	8.0000
SNSP3	1	3.3210e-8	3.3210e-8	3	8.0000
KSD1	-1	1.6318e-8	1.6318e-8	3	8.0000
KSD2	0	1.7147e-9	1.7147e-9	3	8.0000
KSD3	1	5.1183e-11	5.1183e-11	3	8.0000

Table 1: Comparism of iterative methods TPM, BEM, SNSP1, SNSP2, SNSP3, with the new methods KSD1, KSD2, KSD3

Waziri and Saminu /A New Eight-Order Iterative ...

METHODS	В	$ x_n - \alpha $	$ f(x_n) $	ITERATION	COC
		f5(x) = (x -	$(1)^3 - 2, x0 = 3$		
TPM	1	6.5281e-14	3.100e-13	5	8.0000
BEM	0	1.3323e-15	7.0000e-15	4	8.0000
SNSP1	-1	2.1758e-9	1.0362e-8	3	8.0000
SNSP2	0	4.5065e-9	2.1461e-83.8802e-	3	8.0000
SNSP3	1	8.1479e-93.9324	e- 8	3	8.0000
KSD1	-1	9	1.8727e-8	3	8.0000
KSD2	0	3.2512e-10	1.5483e-9	3	8.0000
KSD3	1	5.8899e-12	2.8048e-11	3	8.0000
		f6(x) = (x + x)	2) $e^{x} - 1$, x0 = 2		
TPM	1	9.0154e-11	1.4805e-10	7	8.0000
BEM	1	7.7767e-11	1.2770e-10	6	8.0000
SNSP1	-1	4.5075e-14	7.4e-14	6	8.0000
SNSP2	0	1.0902e-13	1.79e-13	6	8.0000
SNSP3	1	1.7886e-13	2.94e-13	6	8.0000
KSD1	-1	8.8596e-14	1.45e-13	6	8.0000
KSD2	0	1.4988e-15	2e-15	6	8.0000
KSD3	1	7.6275e-9	1.2526e-8	6	8.0000
		$f7(x) = \sin^2(x)$	$() - x^2 + 1, x_0 = 1$		
TPM	1	3.8414e-14	9.5000e-14	5	8.0000
BEM	-1	8.8817e-16	3.0000e-15	4	8.0000
SNSP1	-1	1.6168e-9	4.0136e-9	3	8.0000
SNSP2	0	3.1668e-9	6.5721e-9	3	8.0000
SNSP3	1	5.6023e-9	0.0e-15	3	8.0000
KSD1	-1	2.9333e-9	7.2819e-9	3	8.0000
KSD2	0	2.1399e-10	5.3123e-10	3	8.0000
KSD3	1	3.5705e-12	0.0e-16	3	8.0000

Table 2: Comparism of iterative methods TPM, BEM, SNSP1, SNSP2, SNSP3, with the new methods KSD1, KSD2, KSD3

REFERENCES

- Ostrowski, A. N. (1973). Solutions of equations in Euclidean and Banach spaces. Academic Press.
- Traub, J. F. (1977). iterative methods for the solution of equations, Chelsea publishing company. *New York*.
- Gutierrez, J. M., & Hernandez, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. *Bulletin of the Australian Mathematical Society*, 55(1), 113-130.
- Argyros, I. K., Chen, D., & Qian, Q. (1994). The Jarratt method in Banach space setting. *Journal of Computational and Applied Mathematics*, 51(1), 103-106.
- Chun, C., & Ham, Y. (2008). Some fourth-order modifications of Newton's method. *Applied Mathematics and Computation*, 197(2), 654-

658.

- Feng, J. (2009). A New Two-step Method for solving Nonlinear equations. *International Journal of nonlinear science*, 8(1), 40-44.
- Khattri, S. K., & Argyros, I. K. (2010). How to develop fourth and seventh order iterative methods. *Novi Sad J. Math*, 40(2), 61-67.
- Chun, C., & Ham, Y. (2007). Some sixth-order variants of Ostrowski root-finding methods. *Applied Mathematics and Computation*, 193(2), 389-394.
- Petkovic, M. S. (2009). On optimal multipoint methods for solving nonlinear equations. *Novi Sad J. Math*, *39*(1), 123-130.
- Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order conver-

gence for solving nonlinear equations. *Journal of Computational and Applied Mathematics*, 225(1), 105-112.

- Zhao et.al ,(2012).World Scientific and Engineering Academic Society (WSEAS): 11, 283-293.
- Zhang, S., Zhao, X. I. A. O. M. I. N. G., & Lei, B. (2012). Facial expression recognition using sparse representation. WSEAS transactions on systems, 11(8), 440-452.
- Ababneh, O. Y. (2016). New fourth order iterative methods second derivative free. *Journal* of Applied Mathematics and Physics, 4(3), 519-523.
- Thukral, R., & Petković, M. S. (2010). A family of three-point methods of optimal order for solving nonlinear equations. *Journal of Computational and Applied Mathematics*, 233(9), 2278-2284.
- Bi, W., Wu, Q., & Ren, H. (2009). A new family of eighth-order iterative methods for solving nonlinear equations. *Applied Mathematics and Computation*, 214(1), 236-245.
- Salimi, M., Long, N. N., Sharifi, S., & Pansera, B. A. (2018). A multi-point iterative method for solving nonlinear equations with optimal order of convergence. *Japan Journal of Industrial and Applied Mathematics*, 35(2), 497-509.
- Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton's method with accelerated third-order convergence. *Applied Mathematics Letters*, 13(8), 87-93.