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INTRODUCTION

In general, there is no single optimal solution
in multi- criteria problems, but rather a set of
non- inferior (Pareto optimal) solutions from
which the decision maker must select the most
preferred or best compromise solution as the one
to implement. One of the difficulties which occur
in the application of mathematical programming
is that the coefticients in the formulation are not
constants but fluctuating and uncertain. Sakawa
and Yano, 1989 introduced the concept of Pareto
optimality of fuzzy parametric program. Khalifa,
2018 proposed an approach for solving fuzzy
MOLP problems. Kiruthiga and Loganathan,
2015 reduced the Fuzzy MOLP problem to the
corresponding ordinary one using the ranking
function and hence solved it using the fuzzy pro-
gramming technique. Hamadameen, 2018 pro-
posed a technique for solving fuzzy MOLP
problem in which the objective functions coeffi-
cients are triangular fuzzy numbers. Under un-
certainty, vague, and imprecise of data, Garg,
2018 suggested an alternative approach for solv-
ing multi- objective reliability optimization prob-
lem.

De Novo programming defined by Zeleny and
Raff, 1980 emphasizes optimal design of the
original problem instead of just optimizing a sub
problem where the constraints are fixed and
given. This approach is much more flexible than
the usual multi- objective linear programming
(MOLP) (Li and Lee, 1990). Zelany 1980 created
an optimal level model for DNP with resource
and budget. The concept of the optimal systems
design was first applied by Zeleny 1990. Trade-
offs are of inadequately properties designed sys-
tem and through the designing better one can be
eliminated. Fiala, 2011 proposed approaches for
solving multi- objective De Novo linear pro-
gramming, also introduced possible extensions,
methodological and real applications. Umarus-
man and Turkmen, 2013 have built the optimum
production setting through the de novo program-
ming with the global criterion method. Tabu-
canon (1988) has shown that the de novo
programming formulation deal with the best mix-
ture of input specified as well as the best mixture
of the output. Luhandjula, 1986, and 1987 deals
with the problem by incorporating possibilistic

data into single and MOLP framework. Li and
Lee (1990) utilized a two phases for multi- crite-
ria DNP that yields fuzzy solution, and also stud-
ied fuzzy multiple criteria De Novo
programming based on fuzzy set possibility con-
cept. Zhang et al., 2009¢ Chen and Tzeng, 2009¢
Huang et al., 2006¢ Chen and Hsieh, 2006¢ and
Zeleny, 2010 studied De Novo programming.
Khalifa (2018) studied a multi- criteria de novo
linear programming problem with fuzzy param-
eters. Zhuang and Hocine (2017) used the Meta
—goal-programming approach for solving multi-
criteria de Novo programming problems. Eren
(2017) discussed the selection of projects accord-
ing to the evaluating criteria of support mecha-
nisms considered by Regional Development
Agencies (RDAs) through the procedure pro-
vided by a practical solution methodology, which
is an integrating of fuzzy parametric program-
ming and fuzzy linear programming. Umarks-
man (2019) applied Lexicographic goal
programming for solutions of a multiobjective
De Novo programming problem with positive
ideal solutions and the same problem solved with
global criterion method , and hence compared the
results. Babic et al., (2018) showed an example
of how to use De Novo programming instead of
linear programming in real business situations.

In this paper, the MODNLP having possibilistic
objective functions coefficients is studied. The
solution of the problem is defined and established
based on necessary and sufficient conditions, and
the relation between possibilistic levels corre-
sponding to the solution is constructed.

The remainder of the paper is as: In section 2;
some preliminaries needed in the paper are pre-
sented. In section 3, a Poss MODNLP problem
is formulated. In section 4, the 6- possibly effi-
cient solution of the Poss MODNLP problem is
characterized. In section 5, a numerical example
is given for illustration. Finally some concluding
remarks are reported in sectiono6.

PRELIMINARIES
In order discuss our problem conveniently,
some necessary results on possibilistic variables
and its d-cut are viewed (Luhandujla, 1987,
Hussein, 1998 ).
Definitionl. (Hussein, 1998). A possibilistic
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variable X on V is a variable characterized by a
possibility distribution (; (i.e., a rule which asso-
ciated to each veV, a value {; (v) indicates the de-
gree of compatibility of the variable X with the
realization veV.

If V is a Cartesian product of Vi, V2, ..., Va,
then & (vi, v2, ..., Va)is an n- ary possibility
distribution, i.e., & (V)= (G (vi), G2 (v2), ooy G
(vn))

Definition2. The &-cut of a possibilistic vari-
able X is

(X)o={veV: & (v)20).

Definition3. A possibility distribution {; on V
is said to be convex if

& (avi+(1-a) v2 )=min( €. (v!), & (V?));
Vvivier; agf0, 1].

Definition4. The support of a possibilistic vari-
able X is

Supp(X) = {v EV: Sup (T (v)>=0; ¥y > [}]},

usMy(x)

where M, (v) = fu € V: |lu—vl| <x}.

PROBLEM STATEMENT AND SOLU-
TION CONCEPTS

A typical multi objective De Novo linear pro-
gramming (MODNLP) which is designing opti-
mal system by reshaping the feasible set (Fiala,
2011) is formulated with possibilistic data in the
objective functions coefficients as (Poss
MODNLP)

maxZy, =V Gy =p k=12, ..,5
(1)
Subject to
A y-b<0,
p b<B,
y=>0.

Where, beR™ is unknown resources restric-
tions, peR™ is resource prices, ce R | are pos-
sibilistic variables on R characterized by
possibily distribution G¥,) AcR™mand Bis the
given total available budget. It is assumed that all
possibility distributions involved in Poss
MODNLP are convex ones with bounded and
closed supports.

Remarkl1: It is noted that Poss referred to pos-
sibility.
It follows from Poss MODNLP problem that:

pAy<pb<B. 2)

By defining the unit cost p A=weR". So, Poss
MODNLP problem can be rewritten as

max Z, (x, E"} = £y =¥, &*y, k=1,2..,5

3)
Subject to
veY={yeRwy<B, y=0}.

Definition5 (3-Possibly efficient solution). A
point y**€Y is said to be 4- possibly efficient
solution to the (Poss MODNLP)1 problem if
there is no yeY such that:

g (21(}'*, ey < Z;(y, &), 23 (v*, 22) < 233, 82D, ooy T a (3% ©F°1) = By 4y, Ek_l)) o
Zi(y*, &%) < Zi(y, ), Ziga (77, €41) < Zaga (3, 1), L 2008 < Zo(ve®) ) T

On account of the extension principle,
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P zl{.‘?r‘a El} = zl{}ra El}a z:{}r“ Ez} = zz @'Ez}a wam g zk—l(}’-: Ek-l} = zk—l(}ra Ek-l})
O\ 2y, E) = T3, ), Zieg s (v, E4) = Zaga (3084, o, Zo (3, @) < Z,(3,E)

= sup
(et e

where,

; max( {2 (81, {2 (E2), ooy Coema (E%71), Loae(E%), Copena (E5FL), oo, Los(E9) ) 5)

(%, €2,...,c%) € RE*nL 7, (y%,#1) < B, (y, &), Zao(y*, &) < Z,(y, &2)

D=

poonr Zema (97, 1) = Zy (v 8571), Zi(y, %) = (v, %),

Zirr (3", ) = Ty (3,254, 1, Zy (', 29) = Z,(7,2%) (6)

and G« (k=1,2,...,s), and mXn- ary possibility
distributions.

CHARACTERIZATION OF 6- POSSIBLY
EFFICIENT SOLUTION FOR PROBLEM

Our aim is to characterize the d-possibly effi-
cient solution for the problem (3), so let us apply
the following d-parametric MODNLP problem,
i.e., (6-PMODNLP)

(6-PMODNLP)  max Zk (%, ck)=cky=Y"i=1
cyii=1,2,...s (7)
Subject to

yeY,cke(Ci* )s.

Where (c * )sare the § -cut of the possibilistic
variables c¢ . By the convexity assumption,

Where (¢i¥)s are the 8 -cut of the possibilistic
variables ci*. By the convexity assumption,
(i (Ci%)s,i1=1,2,..,n;k=1,2,...,s are real inter-
vals that are denoted by are real intervals that are
denoted by [ci* (8)% ci* (8)V]. Let & be the set
of 1xn matrices c*=(c* ), with ci*€[ci* ()", ci¥
(6)V],k=1,2,...,s. It clear that 5-PMODNLP may
be rewritten as
max Zx (%, c€),k=1,2,....s (8)
Subject to
y €Y, and ck€ &k k=1,2,....s.

Definition6. (6-Parametric efficient solution).
A point y'€Y is said to be an - parametric effi-
cient solution to the problem (8) if and only if
there are no y€Y, and c*€{s* such thatZx (y", c)<

Zx (y, c9); Yk and strict inequality holds for at
least one k

Theorem1. A point y*"€Y is an §- possibly ef-
ficient solution to the problem (3) if and only if
Yy €Y is an 9- parametric efficient solution for
problem (8).

Proof. Necessity: Let y'€Y be an - possibly
efficient solution to the problem (3) and is not
y'EY an o- parametric efficient solution for
problem (8). Then there are y'€Y and
dkelskk=1,2,...,s such that

Ze (y, d*)<Z_ (y', d'); V te{l,2,..,s} and
ke{1,2,...,s} such that

Zx (y',d*)<Z_x (y!, d"). As d*€ls*, we have

~

Zy(y" &) < 2,0y, B9, 2o (v, 8) < Z(y, B9), e,
poss | Zga(v' ) < Ty (385 Y) By #¥) < Tl ) |26
|zk+1(FG‘Ek+1] < zk+1(}riEk+1J| HHZSI:?“ES:' < zs(_?l EE:I

©)

Contradiction to the assumption that y*€Y is a
0- possibly efficient solution to the problem (3).

Sufficiency: Let y'€Y be an 8- parametric ef-
ficient solution to the problem (8) and y'€Y is
not an d-possibily efficient solution for problem
(3). Then there are y?€Y and ke{1,2,...,s} such
that
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Zy(y*, &) = Z,(v%, &), L,(v", %) = Z,(v2, &), ...,

Poss

Zea(y 85 ) = T (3, 8571), 2y, ) = Zi(y? ) ) =5

(7 ) S 2, (P ), R ) S L07,)

1.e.,

Calfh ittt B JiEa [0F)
S, ( il e = s e ) =

(et.ed,... cFyab

Where

(10)

(€Y, €2,...,c%) € REO=M: 7, (y*,8%) < Z,(y%, ), Z,(v", ) < Z,(y%,2%)

]|
I

e Zem1 (¥ 85 7Y) = Z (2 8571), 2y, ) = Zi(y?, 25),

Ziep1 (Y T = Zigy (v3, 1), 0 Zo(v, ©9) S 2,65, )

For this supremum exists, there is (1, r?,...,r°)€
D with max (€ «! (r'),&? (r?),...& ()<
then

sup  max({(r1), {2 (r?), .., {=(r?)) < 6.

(rt, r2,.r¥ab

Contradiction (6). Thus there is (r1, r?,...r)€D”
satisfying
max (€ <1 (1), T2 (r?),... 5 (%)) >, (11)

1e.,
rke &skk=1,2,...,s (12)

It follows from (9) , and (11) that contradiction
the efficiency y” for the problem (8).

By solving the problem (8) which is the contin-
uous knapsack problems, we have

[]_l R#i
i's’= B
i {— EeE : :
wi be the solution with the

corresponding ideal objectives Zx* for the ideal
system with respect to B, where

. . ::[j‘
i E {L € R“:m_ax—}
i Wi

The Meta- optimum problem corresponding to
the problem (8) is formulated as
min F=wy
Subject to

(13)
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cky > 7,
y=>0, ckel sk k=1, 2, .., s

Using GAMS software the solution of problem
(13)is: y;B'=wy’, andb'=Ay".

To provide an effective and fast tool for the effi-
cient optimal redesign of large- scale linear sys-
tems; let us introduce the optimum- path ratio (Shi,
1995) as

g1=B/B" B<B’

The optimal design of the system for the budget
B:y=g 1, ,)b=gibZ=g:17" .

It is noted that if k<n, synthetic solutions can be
obtained by solving the problem individually,
Where, Shi,1995 defined the synthetic optimal so-
lution as y"'=(yi}, yiz?,...yi",0,....,0), where yie® is
the optimal solution of problem(8). There are six
types of optimum- path ratios (Shi, 1995):

B B _ B 3 ABf
gl - B"gz Bk B‘_!gS i E_‘-'gq: o B P
_LiABf LB

35 o B. 'gﬁ'_ Bt-

There is possible to establish different optimal
system design as option for the DM.

NUMERICAL EXAMPLE
Consider the following Poss MOLP problem
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max 7y, = Xie1 &* yi ke = 1,2 (14)

Subject to
3x1+4x2<40,
xX1+3x2<30,
X,x2=>0.

The Poss MODNLP problem can be formulated
as

mﬂxgk = Ef:lﬁik vik=12 (15)

Subject to
1.9x14+3.2x:<42,
X, X2=>0.

With the price p=$(0.5, 0.4), and the budget
level B=$ 35.

The possibilistic variables ¢! and ¢’ is char-
acterized by a possibility distributions (<« (.),
and(x 2 (.),

respectively. The supports of ¢ i'and 2 are[1,

3], and [1, 5], and may be defined as:

Supp (&')=1+34, {a()=0a(2)=0
{,2(1)=42(2) =0
(2(1)=¢=:(3)=0

{r2(4) = 2(5) =0

Supp (&:')=2-35,
Supp (&%) =1+ 26,

Supp (&°)=4+75,

At 6=0, the problem corresponding to problem
(5)is

max Z, = x, +2x,

(16)

max Z, = lx, +5x,

Subject to
1.9x, +3.2x, <42,

X;,X, 20

Solving the problem (16) individually with re-

spect to the constraints of problem (14), we get:
Z'=20 , Z, =40 Thus

minF =19y, +3.2y,

(17

Subject to
The solution is:

=0,y, =13.125,B" = =19 32 =42
N V2 vy ( )[13.125j

340 (5250
AT 313025 739375

Hence,

r = B35 8333
B* 42
Thus, the possibilistic optimal design of the sys-
tem for the budget B is:

y=ry =083330
. 52.50 43.74825
b=rb" =0.8333 =
39.375 | |32.8112

. (21.875
Z=nZ =
43.75

CONCLUDING REMARKS

In this paper, possibilistic MODNLP has been
studied. The solution of the problem has been de-
fined and established under the using of efficient
and necessary condition. In addition, the relation
between possibilistic levels corresponding to the
solution was constructed. A solution procedure for
solving the problem has proposed. In addition, we
deduce that the optimal system should of free
tradeoft, and the De Novo programming is one of
the methodology used in the optimal system de-
sign.

13.125)=(0  10.9375),
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