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Abstract
In this paper, the wavelet method based on the Chebyshev

polynomials of the second kind is introduced and used to solve systems
of integral equations. Operational matrices of integration, product, and
derivative are obtained for the second kind Chebyshev wavelets which
will be used to convert the system of integral equations into a system
of algebraic equations. Also the error is analyzed and at the end, some
examples are presented to demonstrate the efficiency and validity of
the proposed method.
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INTRODUCTION
Since few of functional equations can be solved

explicitly, it is necessary to develop some meth-
ods to obtain approximate solutions of functional
equations. In recent years, approximating by
using orthogonal functions and polynomials has
been developed to estimate the solution in differ-
ent disciplines. The main idea of using an orthog-
onal basis is that the problem under study reduces
into a system of linear or nonlinear algebraic
equations by considering truncated series of or-
thogonal basis functions with unknown
coefficients for the solution of problem and using
the operational matrices. 

The wavelet theory as an orthogonal system is
relatively new and in recent years has been used
in different fields of science and engineering. In
this paper, a new wavelet, based on orthogonal
Chebyshev polynomials of the second kind, is in-
troduced and their operational matrices are ob-
tained and then they are used to solve systems of
integral equations. These systems arise from
mathematical modeling of many phenomena in
science and engineering and some methods, for
solving such systems, have been proposed in the
literature such as Adomian decomposition (Bi-
azar et al., 2003). Homotopy perturbation (Biazar
et al., 2009; Biazar & Ghazvini, 2009), Varia-
tional iteration (Biazar & Aminikhah, 2009),
Adomian-Pade technique (Dehghan et al, 2009),
Runge-Kutta (Maleknejad & Shahrezaee, 2004),
Tau (Abbasbandy & Taati, 2009; Pour-Mahmoud
et al., 2005), radial basis functions (Golbabai et
al., 2009) and etc.

This paper is organized as follows: Section 1 is
devoted to introduction; in Section 2 the second
kind Chebyshev wavelets are introduced and
their operational matrices of integration, product,
and derivative are computed; the error bound is
obtained in Section 3; some examples are pre-
sented in Section 4; Conclusions are given in the
final section, 5.

THE SECOND KIND CHEBYSHEV
WAVELETS

Wavelets are functions generated from one sin-
gle function ψ(x), with some vibrations and a
zero average, ∫R ψ(x)dx=0, that called the mother
wavelet, by the operations of dilation and trans-
lation (Daubeches, 1992; Hernandez & Weiss,

1996; Chui, 1997; Christensen & Christensen,
2004; Chau, 2004; Walnut, 2004). In other
words, wavelets are small waves with rapid
decay or compact supports, and thus well local-
ization abilities. When the dilation parameter, a,
and the translation parameter, b, vary continu-
ously, we have the following family of continu-
ous wavelets, 

a,b∈ℝ,    a≠0, (1)

If we take the dilation and translation parame-
ters a-j, and kba-j, respectively where a>1, b>0,
j and k are positive integers, then we have the fol-
lowing family of discrete wavelets,

(2)

These functions generate a wavelet basis for L2

(ℝ), and for special case a=2, and b=1, the func-
tions ψ(j,k) (x) are an orthonormal basis. As a re-
sult, by changing k, the function is shifted on the
x-axis and by changing j, the domain of function
is varied. The orthogonal wavelets are connected
with multiresolution analysis. A multiresolution
analysis of L2 (ℝ) is a sequence of closed sub-
spaces Vj of L2 (ℝ) that satisfy the following con-
ditions,

1) {0}⊂⋯ ⊂ V-1 ⊂ V0 ⊂ V1 ⊂ ⋯ ⊂ L2 (ℝ),
2) ⋃j∈Z=L2 (R),
3) ⋂j∈Z={0},
4) ∀j (j∈ℤ,  f(x)∈Vj � f(2x)∈Vj+1),
5) ∀k (k∈ℤ, f(x)∈V0 � f(x-k)∈V0 ),
6) There are ϕ∈V0 such that {ϕ(x-k)}k∈Z is an

orthonormal basis forV0.
For every j∈ℤ, define Wj to be the orthogonal

complement of  Vj in Vj+1, denoted by Vj ⊥Wj such
that Vj+1=Vj⊕Wj. In fact, Wj includes the infor-
mation that Vj converts to Vj+1. The sequence {ϕj,k

(x)| k∈ℤ}={2j/2 ϕ(2j x-k)| k∈ℤ} is an orthonormal
basis for Vj and {ψ(j,k) (x)| k∈ℤ}={2j/2ψ2 j x-k)|
k∈ℤ} is an orthonormal basis for Wj.

Wavelets ψn m (x)=ψ(x;k,n,m) are defined on the
interval [0,1], as follows:

(3)
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Where k is a positive integer, m is the order of
Chebyshev polynomials of the second kind, and
n=1,2,…,2k-1. Um (x) is the famous Chebyshev
polynomial of the second kind of degree m,
which is orthogonal with respect to the weight
function W(x)=√(1-x2 ) on the interval [-1,1].
These polynomials satisfy the following differ-
ential equation,

(1-x2 ) U''m (x)-3x U^'m (x)+n(n+2) Um (x),      (4)
and can be obtained by recursive formula as

follows (Gautschi, 2004),

(5)

The set of Chebyshev wavelets of the second
kind, ψn m (x), is an orthogonal set with respect to
the weight function Wn (x)=W(2k x-2n+1). A
square-integrable function f(x), defined on the in-
terval [0,1], can be presented as,

f(x)=∑n=1
∞ ∑m=0

∞ cn m ψn m (x),                        (6)

The series representation of  in (6) is called a
wavelet series and the wavelet coefficients, cn m,
are given by cn m=(f(x),ψn m (x))Wn (x). The con-
vergence of the series (6), in L2 ([0,1]), means
that,

(7)

(For more information see reference (Chui,
1997)). Therefore, one can consider the follow-
ing truncated series for infinity series (6),

(8)

Where C and ψ(x) are 2k-1 M×1 matrices given
by

C=[c10 ,c11,…,c1 M-1,c20,c21,…,c2 M-1,…,c2k-1 0 ),…
,c2k-1 M-1 ) ]T                                                                                        (9)

=[c1,c2,…,cM, cM+1,…,c2
k-1

M ]T

and
ψ(x)=[ψ10 (x),ψ11 (x),…,ψ1 M-1 (x),ψ20 (x),ψ21

(x),…,ψ2 M-1 (x),…,ψ2k-1 0 (x),                        (10)
…,ψ2k-1 M-1 (x)]T

=[ψ1 (x),c2 (x),…,cM (x),c(M+1) (x),…,c2k-1 M

(x)]T,

The integration of the product of two Cheby-

shev wavelets vector functions, with respect to
the weight vector function W(x), is derived as,

∫01 W(x)  ψ(x)  ψT (x)dx=I,                       (11)
where I is an identity matrix.
A function f(x,y), defined on the domain

[0,1]×[0,1], can be approximated as the follow-
ing,

f(x,y)≈ψT (x)  K ψ(y).                                     (12)

Here the entries of matrix                                  
can be obtain by,

(13)

i,j=1,2,…,2k-1 M.

The operational matrix of integration
The integration of the vector ψ(x), defined in

(10), can be achieved as,

(14)

Where P is the 2k-1 M×2k-1 M operational matrix
of integration and is determined as follows,

(15)

where L, F, and O are M×M matrices given by,

(16)

(17)



(18)

The operational matrix of derivative
The operational matrix of derivative, D, is

given by,

(19)

Where D is the 2k-1 M×2k-1 M matrix. This ma-
trix can be determined as follows,

(20)

in which O is a M×M null matrix and D ̃  is
M×M lower triangular matrix and its entries are
derived as follows,

(21)

The operational matrix of Product
The product of two vector bases of the Cheby-

shev wavelets of the second kind is as,
ψ(x)  ψT (x)  C ≈ C  ̃ ψ(x),                          (22)

where C is the vector defined as (9), and C  ̃is
a 2k-1 M×2k-1 M matrix. This matrix is called the
operational matrix of product and is defined as
the following,

(23)

Where O is a M×M null matrix, and Cr̃=1,2,…
, 2k-1, are M×M symmetric matrices as follows,

(24)

with the following entries, 

(25)

where n=(r-1)M+i and m=(r-1)M+j. 

3. Error analysis
Lemma 3.1: The number of vanishing mo-

ments for a Chebyshev wavelet of the second
kind, ψn m (x), is equal to m, (Nielsen, 1998).

The decay of the wavelet coefficients is given
by the following theorem.

Theorem 3.2: Assume that f(x)∈Cm ([0,1]), and 

is the approximate solution resulted by using the
Chebyshev wavelets method of the second kind.
Then the wavelet coefficients, cn m, decay as fol-
lows,

(26)

Where In m=Supp(ψn m )={ x |  ψn m (x)≠0 }

and Cm is a constant independent of
n, k, and f(x).

Proof: The wavelet coefficients can be ob-
tained as follows,

(27)

Consider the Taylor expansion of f(x)  around  
, that is the middle point of subinterval 

In m.

(28)

Substituting Eq. (28) into (27) leads to,
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(29)
By regarding the change of variable y=2k x-

2n+1 in (29) one has,

Due to the Lemma 3.1, one has,

i=0,1,…,m-1,     (30)

Therefore,

(31)
and

(32)

By considering 
the result will be obtained.

The above theorem implies that wavelet coef-
ficients are exponentially decayed with respect
to k  and by increasing m the decay increases.
Therefore, one has 

The error bound of the approximate solution
via the Chebyshev wavelets of the second kind
series is given by the following theorem.

Theorem 3.3: Suppose that (x)∈CM ([0,1]). The
error of approximate solution is bounded as fol-
lows, when the Chebyshev wavelets method of
the second kind is used, 

(33)

Proof: Let’s consider the following norm,

(34)
Since the interval [0.1] is divided into the 2k-1

subintervals that the
function f(x) is approximated on each the subin-
terval by using the Chebyshev wavelets method
of the second kind as a polynomial at most of (M-
1)th degree with the least-square property, there-
fore, it will be as,

where SM (x) is any polynomial of degree M-1,
that interpolates f(x) on In m with the following
error bound,

(35)

Therefore, this error bound can be manipulated
to get the results as follows,

NUMERICAL EXAMPLES
In this section, some examples of systems of

integral and integro-differential equations are
considered and will be solved by wavelet method
based on Chebyshev polynomials of the second
kind. Here, the computations associated with
these examples, are performed by the package
Maple.
Example 4.1: Consider the following system

of linear Fredholm integro-differential equations,
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0≤x≤1,
(36)

with the initial conditions u(0)=1, u'(0)=0,
v(0)=-1, and v' (0)=2. The exact solutions are
u(x)=3x2+1 and v(x)=x3+2x-1, (Pour-Mahmoud
et al. 2005).

Set k=1 and M=8. According the wavelets
method, the following approximations are con-
sidered,

u'' (x) ≈ ψT (x) C1,                   v'' (x)≈ψT (x) C2,  
u' (x) ≈ ψT (x) PT C1,        v' (x)≈ψT (x) PT

C2+2=ψT (x) PT C2+ψT (x) V1,   
u(x) ≈ ψT (x) (PT)2 C1+1=ψT (x) (PT)2 C1+ψT (x) U0,  
v(x) ≈ ψT (x) (PT)2 C2+2x-1=ψT (x) (PT)2 C2+ψT

(x) V0,   
2xt ≈ ψT (x) K1 ψ(t),       3(2x+t2)≈ψT (x) K2 ψ(t),   
3x2+      x+8≈ψT (x) F1,       21x+      ≈ψT (x) F2.

By substituting these assumptions into (36) and
multiplying both sides of the system by Wn(x) ψT

(x), and then applying ∫02(∙)  dx, the following lin-
ear system will be obtained,

(37)
By solving system (37), the elements of un-

known vectors C1 and C2 can be obtained as fol-
lows,

C1=[3√π,0,0,0,0,0,0,0]T,         
C2=[3/2 √π,3/4 √π,0,0,0,0,0,0]T,  
Then, the following solutions will be achieved,
u(x)≈ψT (x) (PT)2 C1+1=3x2+1,             
v(x)≈ψT (x) (PT )2 C2+2x-1=x3+2x-1, 

which are the exact solutions. In (Pour-Mah-
moud et al, 2005), this example is solved by Tau
method and approximate solutions were obtained
while the proposed method leads to exact solu-
tion.

Example 4.2: In this example, the following
non-linear system of Volterra integro-differential
integral equations of the second kind with con-
ditions u(0)=1,u' (0)=1,v(0)=1,  and v'(0)=1, are
studied, (Biazar & Aminikhah, 2009),

0≤x≤1,                                                     (38)

The exact solutions are u(x)=sinx and
v(x)=cosx.

Set k=1 and M=6. The elements of vectors C1

and C2 are computed by solving the system of
non-linear equations for twelve unknowns, via
Maple package, as follows,

c10=-0.7536850066,          c11=0.1040241385,             
c12=0.0239268783,             c13=-0.0010926963,            
c14=-0.0001252716,          c15=0.0000034220, 
c20=0.4117393776,            c21=0.1904151228,              
c22=-0.0130713226,          c23=0.0020001698,              
c24=0.0000684944,            c25=0.0000065540. 

Therefore, we have the following approximate
solutions, 

u(x)=0.007237318620x5+0.001675525708x4 -
0.1676986585x3+0.0002907561959x2

+0.99999660244x+0.000001126152312, 
v(x)=-0.003953768999x5+0.04607106796x4 -

0.002358733495x3 -0.4993893157x2

-0.00006709771441x+1.000002062.
The plots of the exact and approximate solu-

tions and the absolute error are shown in Fig.1.
and some values of the absolute errors are pre-
sented in Table 1.

Example 4.3: Consider the following system of
non-linear Fredholm integral equations of the
second kind,

0≤x≤1, (39)

with the exact solutions u(x)=x and v(x)=ex-x. 
According to the wavelets method, consider

k=2, M=6, and  

Applying the Chebyshev wavelets approach of
the second kind, the following results will be ob-
tained for vectors C1 and C2.

c101=0.1566513236,         c1 11=0.07832411924,
c1 21=0,   
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c1 31=0, c1 41=0,        c1 51=0,   
c2 01=0.4699477997,         c2 11=0.07832411913,

c1 21=0,   
c2 31=0,         c2 41=0,        c2 51=0,   
c1 02=0.6543460812,         c1 12=0.02272977649,

c1 22=0.006337577837,   
c1 32=0.0002522419,         c1 42=0.00001051008,

c1 52=0,   
c2 02=0.8669839458,         c2 12=0.08831267148,

c2 22=0.01037344830,   
c2 32=0.0004204031,         c2 42=0.00001051008,

c2 52=0.  

Therefore, one gets the following approximate
solutions, 

Example 4.4: Consider the following system of
non-linear Volterra integral equations of the first
kind with the exact solutions u1 (x)=x2-x+½,  u2

(x)=x,u3 (x)=-x+1/5, and u4 (x)=x3--¼, (Biazar et
al., 2009), 

(40)

where, f1 (x)=-1/5 x7-1/6 x6+19/75 x5-31/200
x4+751/375 x3-5/2 x2+5/2 x, f2 (x)=-1/5 x7+1/4 x6-1/4
x5+7/24 x4+7/60 x3+9/10 x2, f3 (x)=1/6 x7+1/4
x5+1/24 x4+1/5 x3-x2+2/5 x, f4 (x)=7/60 x5-7/20 x4-
7/50 x3-1/8 x2+1/2 x.

By taking k=2, M=4 and applying the Cheby-
shev wavelets method of the second kind, the fol-
lowing results will be achieved by solving
resultant nonlinear system.

The exact and approximate solutions are plot-
ted in Figs. 3 and some values of absolute errors
are presented in Table 3. This example has been
solved by Homotopy perturbations method in
(Biazar, et al., 2009) and comparison between the
obtained absolute error in (Biazar, et al., 2009)
and current paper shows that the absolute error
of Chebyshev wavelets method of the second
kind are lesser than the absolute error of Homo-
topy perturbations method.

x error u(x) error v(x) 
0 1.1262×10-6 2.062×10-6

0.2 3.9300×10-8 7.0700×10-8

0.4 8.9000×10-9 8.7800×10-8

0.6 3.7300×10-8 8.6300×10-8

0.8 6.4700×10-8 2.0700×10-8

1.0 1.1378×10-6 1.9082×10-6

Table 1: The absolute error values of example 4.2 for
some values of x

x error u(x) error v(x) 
0 4.9225×10-6 7.0816×10-4

0.2 1.5541×10-5 3.6273×10-5

0.4 3.6004×10-5 3.0710×10-6

0.6 5.6466×10-5 1.1037×10-5

0.8 7.6928×10-5 5.3720×10-5

1.0 9.7391×10-5 4.9414×10-4

Table 2: The absolute error values of example 4.3 for
some values of x
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x error u1(x) error u2(x) error u3(x) error u4(x) 
0 2.0000×10-10 2.3937×10-10 3.0000×10-10 5.0000×10-10

0.2 9.6380×10-11 1.2531×10-10 3.6270×10-11 1.5600×10-11

0.4 7.9800×10-12 9.2880×10-11 6.7800×10-11 2.6200×10-11

0.6 2.2834×10-10 6.3520×10-10 2.2370×10-10 1.0139×10-9

0.8 8.0800×10-11 5.1150×10-10 4.0530×10-10 1.0084×10-9

1.0 6.6880×10-10 6.0530×10-10 1.0440×10-9 1.0042×10-9

Table 3: The absolute error values of example 4.4 for some values of x

Fig. 1. (a1) – (a2) The exact and approximate solutions, (a3) – (a4) Plots of absolute error of
example 4.2

Fig. 2. (b1) – (b2) The exact and approximate solutions, (b3) – (b4) Plots of absolute error of
example 4.3



CONCLUSION
The aim of this paper was to introduce the

Chebyshev wavelets method of the second kind
for obtaining the solutions of systems of integral
equations. Considering the results based on these
wavelets and using the operational matrices, the
system of integral equations is converted into an
algebraic system. According to the results ob-
tained in the illustrative examples, it is concluded
that the proposed method is a very effective and
useful technique for finding approximate solu-
tions of these systems. Finding the applications
of this method and other orthogonal functions is
one of the objectives of the further investigations.
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