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Abstract
The present study addresses the following question: if among a

group of decision making units, the decision maker is required to in-
crease inputs and outputs to a particular unit in which the DMU, with
respect to other DMUs, maintains or improves its current efficiency
level, how much should the inputs and outputs of the DMU increase?
This question is considered as a problem of inverse data envelopment
analysis, and a method is introduced to answer this question. Using
(weak) pareto solutions of multiple-objective linear programming,
necessary and sufficient conditions for inputs and outputs estimation
are established. An application of inverse DEA using real data (for
choosing a suitable strategy for spreading educational departments in
a university) is presented. In addition, two new optimal notions are
introduced for multiple-objective programming problems: semi-
pareto and semi-weak pareto optimal notions. The aforementioned
solutions are used to answer the above question.
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INTRODUCTION
Data envelopment analysis (DEA) was intro-

duced by Charnes, Cooper, and Rhodes  (CCR
model) (1978) and  extended by Banker et al.
(BCC model) (1984). DEA is a well-known non-
parametric technique  in operation research and
management science which is based on linear
programming to estimate  relative efficiencies of
a decision making unit (DMU). In this technique,
it is assumed that the assessed units are homog-
enous and consume the same  multiple inputs for
producing the same  multiple outputs. DEA has
been used and developed by many researchers,
see e.g. Cook and Seiford (2009), Cooper et al.
(1999), and Hatami-Marbini et al. (2011) for
some reviews. Moreover, relationships between
DEA and multi-objective linear programming
(MOLP) have been studied from several view-
points by many researchers, see, e.g., Golany
(1988), Hosseinzadeh Lotfi et al. (2010a, 2010b),
Joro et al. (2003), Lins et al. (2004), Quariguasi
Frota Neto and Angulo-Meza (2007), Thanas-
soulis and Allen (1998), Wong et al. (2009), and
Yang et al. (2009) among others.

DEA and MOLP can be applied as mathemati-
cal tools in management control and planning.
Whilst  these two types of models are similar in
structure, DEA  is directed to assess past per-
formances as part of the management control,
MOLP is to planning future performance targets
(Yang et al., 2009). 

The idea of the inverse DEA first appeared in
Zhang and Cui (1999), though inverse DEA  was
formally studied at first in a worthwhile paper by
Wei et al. (2000). In Zhang and Cui (1999) the
input increases of a DMU are estimated for its
given output increases under the CCR efficiency-
fixed constraints. Wei et al. (2000) have studied
the following important question:

Question 1. If among a group of DMUs, the
decision maker increases certain inputs  to a par-
ticular unit and assumes that the DMU,  with re-
spect to other DMUs, maintains  its current
efficiency level, how much should the outputs  of
the DMU increase? They used multiple-objective
linear programming  (MOLP) problem to esti-
mate the desired outputs when the DMU is inef-
ficient, though it was answered by solving only
an LP when the DMU is (at least) weakly effi-
cient. After the initial work in inverse DEA by

Wei et al. (2000), it  has been remarkably consid-
ered by  some scholars in the  DEA field, see,  e.g.,
Gattoufi et al. (2012), Ghobadi and Jahangiri
(2015), Hadi-Vencheh et al. (2006, 2008), Hatami
-Marbini et al. (2011), Jahanshahloo et al. (2004a,
2004b, 2005, 2014, 2015), Lertworasirikul et al.
(2011), Lin (2010), and Yan et al. (2002)  for some
reviews. The following question, along the lines
of (Wei et al., 2000), was investigated in inverse
DEA filed by Hadi- Vencheh et al. (2008): 

Question 2. If among a group of DMUs, the
decision maker increases certain outputs  to a
particular unit and assumes that the DMU,  with
respect to other DMUs, maintains  its current ef-
ficiency level,  how much should the inputs  of
the DMU increase?  Hadi-Vencheh et al. (2008)
used (weak) pareto solutions of MOLP problems
to estimate the desired inputs. Both Questions,
input-estimation and output-estimation, are in-
vestigated under inter-temporal dependence as-
sumption by Jahanshahloo et al. (2015). They are
introduced a new optimality notion for multiple-
objective programming problems, periodic weak
Pareto optimality. These points were used to an-
swer the above questions under inter-temporal
dependence assumption. Recently, Jahanshahloo
et al. (2014) studied the following question in the
inverse DEA field:

Question 3. If among a group of DMUs, the
decision maker is required to increase  inputs and
outputs to a particular unit in which the DMU,
with respect to other DMUs, maintains its current
efficiency level,  how much should the inputs and
outputs  of the DMU increase? The aim of Ques-
tion 3 is estimating the minimum increase of in-
puts and the maximum increase of outputs
provided that the DMU maintains its current ef-
ficiency level. Jahanshahloo et al. (2014) utilized
multiple-objective linear programming tools for
input and output estimation under preserving the
efficiency score. It is worth to mention that Ques-
tion 3 was answered only for the efficient DMUs. 

The aim of the present study is to investigate and
develop the question proposed by Jahanshahloo et
al. (2014). In other words, the present paper ad-
dresses the following question: if among a group of
DMUs, the decision maker is required to increase
inputs and outputs to a particular unit  in which the
DMU, with respect to other DMUs, maintains or im-
proves its current efficiencylevel, how much should
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the inputs and outputs of the DMU increase? Nec-
essary and sufficient conditions to estimate input and
output levels simultaneously are introduced using
pareto solutions of multiple-objective linear pro-
gramming problems.  In addition, two new optimal
notions are introduced for MOLP problems: semi-
pareto and semi-weak pareto optimality.  These
points are utilized in inverse DEA, and it is shown
that all these can be found by a simple alteration in
weighted sum scalarization technique. 

Solving the above question is taken into consid-
erations  both theoretically and practically,  be-
cause it provides new connections between DEA
and MOLP. Moreover, it can  help  the decision
maker  to make  better decisions in order to extend
DMUs. That is to say that the decision makers can
take necessary actions by choosing a suitable strat-
egy for spreading the DMU. In other words, these
can be used for sensitivity analysis (Jahanshahloo
et al., 2004, 2005), preserve (improve) efficiency
values (Jahanshahloo et al., 2004, 2005; Lert-
worasirikul et al., 2011; Wei et al., 2000; Yan et
al., 2002 ) resource allocation (Hadi-Vencheh et
al., 2008), merging the banks (Gattoufi et al.,
2012), and   setting revenue target (Lin, 2010).

The rest of the paper unfolds as follows: In sec-
tion 2, some preliminaries in clouding multiple-
objective optimization and  some of the basic
models in DEA are reviewed. In section 3, the
input and output estimation problem is (simulta-
neously) dealt with. This section is devoted to the
main results of the paper.In section 4, an appli-
cation of inverse DEA using real data (for choos-
ing a suitable strategy for spreadingeducational
departments in a university) is presented. In section
5, two new optimalitynotions for MOLP problems
are introduced.  It is proven  that this solutions can
be characterized by a simple manipulating in the
weighted sum method (Ehrgott, 2005). Concluding
remarks are provided in the section 6.

PRELIMINARIES
Multiple-objective programming

A  multiple-objective  programming (MOP)
problem is written

(1)

Where f:□n→□m and g:□n→□k are two given
vector-valued functions,  i.e.,

(x)=(1(x), 2(x),…, m(x)), g(x)=(g1(x), g2(x),…,
gk(x)) 

 i s  are the objective functions of this MOP.
The set s⊆□n is called the set of feasible solutions
of MOP (1). “min" indicates that the purpose is
to minimizes all objectives simultaneously. There
is usually no solution x∈s that simultaneously
minimizes all objective functions. Therefore,
(weak) Pareto/efficient solutions are defined in-
stead ofoptimal solutions.

Definition 2.1 (Ehrgott, 2005). A feasible so-
lution x*∈ s is called a  Pareto solution to MOP
(1) if there does not exist xo∈s such that 

i(x)i(x*) for each i=1, 2, ..., m
i(x)i(x*) for some i=1, 2, ..., m

Definition 2.2 (Ehrgott, 2005) A feasible solu-
tion x*∈ s is called a weak Pareto solution to
MOP (1) if there does not exist xo∈ s such that fi

(xo)≤ fi (x*) for each i= 1,2,…,m.

Some of the Basic Models in DEA
Let us to consider a set of n DMUs, {DMUj)::

j=1,…,n}, in which DMUj produce multiple pos-
itive Outputs yrj (r=1,…,s), by utilizing multiple
positive inputs xij ( i=1,…,m). Let input and out-
put for DMUj be denoted by xi=(x1i,x2i,…,xmi) and
Yj=(y1j,x2j,…,xsj), respectively. To measure the rel-
ative efficiency  of  the unit under assessment of
DMUo, o={1,2,…,n}, the following input-ori-
ented generalized DEA  model (Yu and Wei,
1996; Wei and  Yu, 1997) is considered:

(2)

where

In the above model σ1, σ2 and σ3 are parameters
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with 0-1  values. It is easy to see that:
If  σ1=0 then  (2) is under a constant returns to

scale (CRS) assumption of the   production tech-
nology. This model  is the first basic DEA model
which has been provided by Charnes, Cooper,
and Rhodes (CCR model) (1978). If σ1=1 and
σ2=1 then (2) is called BCC model which has
been introduced by Banker et al. (1984).This
model is under a variable returns to scale (VRS)
assumption of the  production technology. If  σ1

=σ2=1 and σ3=0, then  (2) known as FG model
which has been proposed by Fare and Grosskopf
(1985). This model is under a non-increasing re-
turns to scale (NIRS) assumption of the produc-
tion technology. If σ1=σ2=σ3=1, then model (2)
is under a non-decreasing returns to scale
(NDRS) assumption of the  production technol-
ogy. This model  suggested by Seiford and Thrall
(1990) is known as ST model.

The optimal value θ0* of the model (2) is called
the input-oriented efficiency score of DMUo. If
θ0*=1, then DMUo is called input-oriented (at least)
weakly efficient.It is easy to see that  θ0* ≤ 1.

The following model is  output-oriented ver-
sion of the model (2):

(3)

In  model (3), φ0* is called the output-oriented
efficiency score of DMUo. It is easy to see that
φ0*≥1 DMUo is called output-oriented (at least)
weakly efficient if  φ0*=1 .

INVERSE DEA
This section is devoted to studying and extend-

ing Question 3, provided by Jahanshahloo et al.
(2014). In other words, the following  question
is addressed: if among a group of DMUs, the de-
cision makeris required to increase  inputs and
outputs to a particularunit  in which the DMU,
with respect to other DMUs, maintains its current
efficiencylevel  or improves it to  the amount -
percent, how much should the inputs andoutputs
of the DMU increase?

The aim of the study is estimating the minimum
increase ofinput vector and the maximum in-
crease of output vector provided that the DMUo,
with respect to other units, maintains its current
efficiency level, that is θ0* , or improves  it to the
amount -percent.  In fact,

Assume that DMUnew  represents DMUo after
changing the input and output vectors. The fol-
lowing model is considered toestimate the effi-
ciency score of DMUnew:

(4)

where

Definition 3.1 Suppose that θ0* and  θ0new are
the optimal values of problems (2) and (4), re-
spectively. Then

i) If θ0*=θ0new then it is said that the efficiency
score of DMUo remains unchanged, i.e., eff
(α0*,β0*)=eff (X0,Y0).

ii) If θ0new = [1+/100] θ0* then it is said that
the amount of improvement of the efficiency of
DMUo is -percent of the θ0*, i.e.,  

To answer the above question, i.e, to estimate
the minimum increase of input vector and the
maximum increase of output vector, in which  the
amount of improvement of the efficiency of
DMUo is -percent of θ0*, the following MOLP
problem is considered:
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(5)

Where θ0* and are the optimal value of problem
(2) and the certain amount of improvement of
current efficiency level of DMUo, respectively.
 and  are bounded sets and  represent  the in-
creasing variation rate of inputs and outputs of
the DMUo which are  considered  by the decision
maker.

Remark 3.2 If the efficiency score of DMUo is
θ0*, then  must be 01- θ0*/ θ0* * 100 If =0
then DMUo, with respect to other units, maintains
its current efficiency score. If =1- θ0*/ θ0* * 100
then DMUo will be  efficient.

The following theorem shows how the above
MOLP can be used forinputs and outputs estimation.

Theorem 3.3 Suppose that (λ*,θ0*=θ*) is an op-
timal solutionto  problem (2). 

Let (λ ̂*, α ̂0*, β 0̂*) be a pareto solution to  prob-
lem(5). Suppose that the inputs and outputs of
DMUo are increased to α ̂0* and β 0̂*, respectively.
Then,

If DMUo be inefficient and α ̂0* ≥≠ x0 then

If DMUo maintains its current efficiency level,
i.e., = 0, and α ̂0* ≥ x0 then eff (α ̂0*, β ̂0*)= (X0, Y0)

Remark 3.4 If α ̂0* = x0 and β ̂ 0* ≥ ≠ Y0, then
β ̂ 0*- yr0 indicates the lack-output amount in rth
output component of the DMUo. In other words,
the decision maker can  preserve the efficiency
score of the DMUo while the outputs increase
from Y0 to β ̂0* without  the inputs increase from
X0. In this case, projection point of DMUo is on
the weak efficiency frontier of the production
possible set.  

Proof. To prove the theorem, θ0new = [1+/100] θ0*

should be shown. Because and (λ ̂*, α ̂0*, β 0̂*) is a
feasible solution for MOLP, the following rela-
tions are held:

(6) 

(7)

(8)

(9)

(10)

(11)

Let λ =̅(λ 1̅ ,…, λ n̅, λ n̅ew), in which λ j̅=λ  ̂j* for
each j=1,…,n and λ n̅ew=0 It is clear that λ ∈̅ Ω new

Since λ ̅∈ Ωnew, because of (6) and (7), (λ ̅
(1+/100) θ0*) is a feasible solution to problem
(4). Therefore, θ0new (1+/100) θ0*.

Let (λ+*= λ1+*,…, λn+*, λnew+*, θ+*=θ0new) be an
optimal solution to problem  (4). The inequalities
(6) and (7) will be used in problem (4),  the fol-
lowing results are obtained:

(12)

(13)

Set λ j̃:=λj+*+λ+*new λ ĵ* for each j=1,2,…,n. It is
easily seen that λ =̃(λ j̃,..., λ ñ)∈ Ω.

By contradiction assume that θ0new< (1+ / 100) θ0*.

Taking Eq. 12  and  θ0new< (1+ / 100) θ0*, the
following inequality is obtained:

(14)

If assumption (i) holds, then α  ̂0*≠X0 Therefore,
there exists some i=∈{1,…,m} in which α î0*> xi0

Let  I = {α î0*> xi0} If

Iranian Journal of Optimization, 9(2): 119-129, 2017 123



(15)

Then μ>0. Now, define β0̂=β0̂* and

Considering (15), thefollowing inequalities are
obtained:

and

(16)

which implies that α 0̃ ≥ X0, because α ĩ0=α î0* ™xi0

for each iI In addition, α 0̃∈, ʌ because X0 ≤ α 0̃
and  α 0̂*∈ ʌ by (10).

According to Eqs. 13, 14  and 16 thefollowing
inequalities are obtained:

(17)

(18)

(19)

Since λ ∈̃ Ω , because of (17)-(19), X0 ≤ α 0̃ ∈ ʌ,
and Y0 ≤ β  ̂i0*=β 0̃∈ Γ, (λ ,̃ α 0̃, β 0̃) is a feasible so-
lution to problem (5), where α ĩ0≤ αî0* and β r̃0≥
βr̂0* for all i,r, and α ĩ0≤ α î0* for some i=1,…,m. 

This contradicts the assumption that (λ ̂*, α0̂*, β 0̂*)
is a pareto solution to problem (5), and the proof
of case (i) is completed.

The proof under assumption (ii) is similar to
the proof of case (i) when replacing the notation
 by constant value zero. The only difference is
in case (ii) when α 0̂*=X0. Note that if α 0̂*=X0,
then by (12) and (13), thefollowing inequalities
are obtained:

(20)

(21) 

Because λ ∈̃ Ω, (20), and (21) imply that (λ ,̃
θ0new) is a feasible solution to problem (2), such
that θ0new<θ0*. But it is impossible because θ0* is
the optimal value of problem (2). 

Remark 3.5 Theorem 3.3 will remain valid if
one replacesthe objective function of MOLP 5
with 

"min (α1o,…, αmo)".
Theorem 3.6 is converse version of Theorem 3.3.
Theorem 3.6  Suppose that  (λ*, θ0*=θ*) is an

optimal solution to problem (2). Let (λ ,̅α 0̅, β 0̅)
be a feasible solution to the problem (5). If

in which 0  1 -
θ0*/ θ0*  *100, then (λ ,̅α 0̅, β 0̅) must be a (semi-)
weak pareto solution to  problem (5).

Proof.  If (λ ,̅α 0̅, β 0̅) is not  a weak pareto solu-
tion to problem (5), then there existsanother fea-
sible solution of  problem (5), (λ ,̃α 0̃, β 0̃), such
that α ĩ0<α i̅0 and β r̃0<β r̅0 for all i, r. Therefore

(22)

(23)
                                                             (24)

If

(25)

then 0<<1. Taking relation (25), thefollowing
inequality is obtained:
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(26)

According to Eqs. (23), (24), and (26), (=,
new=0, =(1+/100)θ0*) is a feasible solution
to problem (4) (considering α0*=α 0̅ and β0*=β 0̅

in problem (4)). The valueof the objective func-
tion of LP (4) at this feasiblepoint is equal to
(1+/100)θ0* Therefore,

This contradicts the assumption and completes
the proof. 

AN APPLICATION OF INVERSE DEA
Consider a static technology comprising of 14

the educationaldepartments in Islamic Azad uni-
versity of Khomeinishahr-Iran as DMU, in
which each DMU uses two different continuous-
valued inputs to produce two different continu-
ous-valued outputs.The data is obtained from the
work of Ghobadi and Jahangiri (2015). The data
of inputs, outputs and efficiency score (consid-
ering input-oriented BCC model) areshown in
Table 1:

As can be seen,  D5 is an inefficient DMU. As-
sume that the decision maker is required toin-
crease the input and output in which D5, with
respect to other DMUs, improves  current effi-
ciency level to mount 5-percentof  its current ef-

ficiency level (θ5*=0.8889).Suppose that the de-
cision maker identifiedthe variations rate of in-
crease  inputs and outputs for this DMU as:

MOLP (5) corresponding to is D5 written as follows:

(27)

Using the weight-sum method (Ehrgott, 2005)
for MOLP model (27), the following pareto so-
lutions  are generated:

Departments x1 x2 y1 y2 Efficiency Score

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

0.385854
0.53634
0.972344
0.554214
0.358756
0.417995
0.511568
0.388259
0.558262
0.272026
0.198246
0.546817
0.558458

1

0.782695
0.786386
0.852564
0.712929
0.912581
0.672647
0.784326
0.837351
0.829015
0.81424
0.883972
0.748349
0.952591

1

11.76842
12.24444
12.43333
11.27391
12.50481
9.646154
12.31864
13.24667
12.28824
12.34615
11.55625
12.48148
13.03182
12.15287

13.97176
10.01111

15.98
14.41182
13.07813
14.51444
14.53929
10.3875
12.72222
14.11111

12.77
14.41182
14.41182
14.41182

0.9772
0.9520
1.0000
1.0000
0.8889
1.0000
0.9976
1.0000
0.9065
1.0000
1.0000
1.0000
1.0000
0.7387

Table 1: The data and efficiency score under VRS.
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Therefore, the decision makers are able to
make better decisions and choosing a suitable
strategy to expand D5. That is to say that the de-
cisionmaker can take necessary actions by choos-
ing a suitable strategy for spreading D5 ,in which
with respect to other DMUs, improves  current
efficiency level to amount 5-percent, i.e. the ef-
ficiency score of new DMU is 0.9333.

As can be seen, D14 is an inefficient unit. Sup-
pose that the decision maker is required toin-
crease the input and output in which D14, with
respect to other DMUs, improves current effi-
ciency level to amount 20-percentof  its current
efficiency level (θ5*=0.7387). The decision
maker identifiedthe variations rate of increase
inputs and outputs for  D14 as follows:

MOLP (5) corresponding to D14 has been writ-
ten and the following results were obtained:

OPTIMALITY NOTION FOR MOLP
In this section, based on the special struc-

ture of MOLP (5), two new optimal notions
are introduced for MOLP: semi-pareto and
semi-weak pareto optimal notions. It is
proven that semi-pareto and semi-weak pareto
solutions can be characterized by a simple
manipulating in the weighted sum method
(Ehrgott, 2005).

The semi-pareto and semi-weak pareto con-
cepts are defined as follows:

Definition 5.1 Let (λ* ,α0*, β0*) be a feasible so-
lution to problem (5). If there is no feasible solu-
tion (λ,α0,β0) of (5) such that (α0-β0) ≤ (α0*- β0*)
and αi0<αi0* for some i∈{1,2,…,m}, then (λ* ,α0*,
β0*) is called a semi-pareto (semi-strongly effi-

cient) solution to problem (5). Let semi-pareto
solutions set of MOLP (5) be denoted by Xsp.

Definition 5.2 Let (λ* ,α0*, β0*) be a feasible so-
lution to problem (5). If there is no feasible solu-
tion (λ,α0,β0) of (5) such that α0< α0* and β0 ≥ β0*,
then  is called a (λ*,α0*, β0*) semi-weak pareto
(semi-efficient) solution to problem (5). Let
semi-weak pareto solutions set of MOLP (5) be
denoted by Xsw.

Let  pareto and weak pareto solutions set of
MOLP (5)  be denoted by Xp and Xw respectively.
It is obvious that Xp⊆ Xsp ⊆ Xsw ⊆ Xw Therefore,
semi-weak pareto optimality and semi-pareto
optimality are two notions between the pareto op-
timality and weak pareto optimality.

Remark 5.3 It is easy to see that the Theorem
3.3 is valid if one replaces the “pareto" assump-
tion with “semi-pareto " assumption.

This section continues with a discussion about
semi-pareto and semi-weak pareto solutions. In
order to the following example is considered:

Example 5.4 The following MOLP is considered:

where A=(1,1,5,6)t,B=(1,1,5,5)t, D=(2,1,4,5)t,
E=(2,2,5,5)t, and F=(2,2,4,4)t

It can be seen that Xp={A}, Xsp={A,B}, Xsw=
{A,B,C,D} and Xw={A,B,C,D,E}

The above example addresses a situation in
which the inclusions Xp ⊆ Xsp ⊆Xsw ⊆ Xw are
strict. This section is ended with theorems 5.5
and 5.6 that show the weight-sum method
(Ehrgott, 2005; Isermann, 1977; Steuer 1986) can
be used to characterize semi-pareto and semi-
weak pareto solutions, respectively.

Theorem5.5 Let ∏=(λ ̅, α 0̅, β 0̅) be a feasible
solution to MOLP (5). ∏ is asemi-pareto solution
of MOLP (5) if and only if there exist positive
weight vector v=(v1,…,vm)∈ □m and non-positive
weight vector U=(u1,…,u2) ∈ □s such that ∏ is an
optimal solution tothe following LP:

(29)
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Proof. If ∏ is not a semi-Pareto solution to
MOLP (5), then there exists another feasible so-
lution of MOLP (5)(and hence feasible to LP
(29), (λ ,̃α 0̃, β0) such that α 0̃ ≤ α i̅0 and β r̃0≥β r̅0

for all i, r, and α 0̃<α i̅0 for some i. Because the V
and U are positive and non-positive weight vectors,

then and Therefore

which implies that ∏ is not an optimal solution
for LP (29).

Conversely, let ∏ be a semi-pareto solution to
MOLP (5). The following auxiliary model is con-
sidered:

In this model, αi is a variable corresponding to
the ith input. Since ∏ is a semi-pareto solution
to MOLP (5), thereforethe optimal value of LP
(30) is zero. Note that LP (30) is always feasible.
Considering the dual of LP (30) and in similar man-
ner to the proof of Theorem 6.11 in (Ehrgott, 2005),
non negative weight vector v=(v1,…,vm)∈ □m and
non-positive weight vector are

obtained such that for each i=1,...,m,

and ∏ is an optimal solution to LP (29). These
complete the proof. 

The most important point in Theorem 5.5  is
that, all of the weights corresponding to inputs
are  positive, butall of the weights corresponding
to outputs are  non-positive.

Theorem 5.6 Let ∏= (λ ,̅ α 0̅, β 0̅) be a feasible
solution to MOLP (5). ∏ is a semi-weak  pareto
solution of MOLP (5) if and only if there exist
nonzero nonnegative weight vector v=(v1,…,vm)
∈ □ m and non-positive weight vector U=(u1,…
,u2) ∈ □ s such that ∏ is an optimal solution tothe

following LP:

(31)

Proof. The proof is similar to the proof of The-
orem 5.5. Note that, the following auxiliary
model is considered:

(32)

In this model, α is scaler variable. Since ∏ is a
semi-weak pareto solution to MOLP (5), there-
fore the optimal value of LP (32)is zero. Consid-
ering the dual of LP (32) and in similar manner
to the proof of Theorem 6.11 in (Ehrgott, 2005),
nonnegative weight vector v=(v1,…,vm) ∈ □ m and
non-positive weight vector U=(u1,…,u2) ∈ □ s are

obtained such that and ∏ is an optimal

solution to LP (31). These complete the proof. 
The most important point in Theorem 5.6 is

that, all of the weights corresponding to inputs
are nonzero nonnegative, but all of the weights
corresponding to outputs are non-positive.

CONCLUSION
This paper studied the inverse DEA problem to

estimate the minimum of inputs increase and the
maximum of outputs increase of the DMU under
preserving or improving the current efficiency
level. Necessary and sufficient conditions were
established using MOLP tools for inputs and out-
puts estimation provided that the DMU maintains
or improves its current efficiencylevel. In addi-
tion, two new optimal notions (semi-Pareto and
semi-weak Pareto optimality) for MOLP prob-
lems were introduced and investigated.

The results can be used to present patterns to
decision makers to increase inputs and outputs
(extending decision making units) of the DMU
either efficient or inefficient while the efficiency
levelremains unchanged or,  to the certain
amount,  improved.
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