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Abstract
One of the most serious principles in production theory in economic

is the principle of "efficiency". Simply put, efficiency can be defined
as the demand that the desired goals (outputs) are achieved with the
minimum use of the available resources (inputs). In order to, distin-
guish the relative efficiency of organizational units with multiple in-
puts to produce multiple outputs, "Data Envelopment Analysis"
(DEA) method was introduced by Charnes, Cooper and Rhodes. In
fact, DEA is a linear mathematical programming which calculates the
efficiency of an organisation within a group relative to observed best
practice within that group. Unlike common statistical analysis which
are based on central tendencies, it is a methodology directed at the
frontier. Recently, DEA has become one of the most favorite fields in
operations research. The background was a motivation for us to in
this paper, via running the CCR model in "DEA-Solver Software",
present data envelopment analysis from simulation on the lattice QCD
with temporal extent Nτ=4,6, respectively. Astonishingly, results are
derived for both cases, indicating the fact that efficient data set belong
to the areas of high temperature (deconfinement phase). It is very in-
teresting to highlight that even an efficient data has not reported at
low temperature (confinement phase). Note that the data obtained at
the critical temperature is also efficient. As expected from practical
lattice QCD, the DEA-CCR model presented in this paper also con-
firms the fact which the best data set arises from simulation in con-
tinuum limit a→0. Indeed, by taking the limit of vanishing lattice
spacing, the efficiency of algorithms can be further.
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INTRODUCTION
Quantum chromodynamics or QCD is the fun-

damental theory to demonstrate of the strong nu-
clear force in hadrons in which quarks interacting
with non-Abelian SU(3) gauge fields (gluons)
(mandls & shaw, 2010; peskin et al., 1996). At
low-energy, QCD has tow separate property: the
confinement and the spontaneous breaking of the
chiral symmetry. Confinement will cause closure
quarks and gluons in hadrons and the origin of
large effective masses of quarks and light pseu-
doscalar mesons come back to spontaneous
breaking of the chiral symmetry. At high-energy,
QCD has an important feature, the asymptotic
freedom. In other words, the QCD coupling de-
creases at short length. So, the perturbation the-
ory is applicable to high energy phenomena with
momentum transfer q≫ΛQCD, where ΛQCD≈200-
300MeV is a typical energy scale of QCD.
Clearly, as the energy scale approaching down to
ΛQCD, the coupling becomes very strong and re-
sult in the failure of perturbation theory. So, the
real question is what is the alternative approach? 

In order to investigate on the QCD in low-en-
ergy, one must first define the theory beyond per-
turbation theory. The lattice regularization
provides a clean way of doing this by replacing
the space-time continuum with a discrete mesh
of lattice points. Notethat one should not be con-
fused with the notion that lattice is as an approx-
imation to the continuum theory. Indeed, it
provides a definition of a theory that is undefined
directly in the continuum. Of course, in order to
regain the continuum limit, the theory must be
renormalized through sending the lattice spacing
to zero while adjusting the bare coupling con-
stants suitably. In the beginning, Lattice QCD
(LQCD) was offered approximately 40 years ago
by wilson (Ginsarg & Wilson, 1982) as a power-
ful quantitative approach to the analyze the non-
perturbative nature of QCD. Indeed, LQCD is a
gauge field theory on 4D Euclidean lattice space-
time, and quantized along the Feynman’s path in-
tegral formalism. The quantized theory can be
regarded as a statistical mechanics system, which
accredit us to fulfill numerical simulations by the
Monte Carlo method. With development of com-
putational equipments as well as numerical algo-
rithms, lattice QCD simulations as a technique,
is used to compute many quantities of phenome-

nological interest such as hadron masses,
hadronic matrix elements, the finite temperature
phase transition and so forth. Also one of its
major applications is study the spontaneous
breaking of chiral symmetry. Overall, a non-per-
turbative lattice calculation proceeds in 3 steps,
for more details refer to (Fodor & Hoelbling,
2012). Simulations of LQCD is involve six un-
familiar input parameters such as the coupling
constant α_s and the masses of the all quarks ex-
cept top quark (since the t quark is very short
livedto form bound states i.e. 0.4×10^(-24) s,
thus not worthy for lattice simulations.) (Gupa,
1998). Overall, the lattice QCD simulation is per-
formed as three step: first of all, generating gauge
configurations. second, measuring physical ob-
servables and finally, analyzing measured quan-
tities. To learn more details on each of these
steps, we recommend refer to Refs (Gupa, 1998؛
Richards, 2001; Shifman, 2001; Creutz, 2011). 

Data Envelopment Analysis (DEA) is an more
and more popular management tool. Usually, it
use to evaluate the efficiency of a number of pro-
ducers. A typical statistical approach is according
to evaluates producers relative to an average pro-
ducer. But contrary, DEA compares each pro-
ducer with only the "best" producers. Meantime,
in DEA literatures, a producer is usually referred
to as a "decision making unit" (DMU). In DEA,
there are a number of producers so that produc-
tion process for each producer is to take a set of
inputs and produce a set of outputs. Of course,
each producer has a different level of inputs and
gives a different level of outputs. As example,
imagine a set of producers so that each producers
has a certain number of inputs and outputs. In-
generally, DEA attempts to determine which of
the producers are most efficient, and to point out
specific inefficiencies of the other producers. In
other words, DEA is a methodology for evaluat-
ing and measuring the relative efficiencies of a
set of decision making units (DMUs) that use
multiple inputs to produce multiple outputs)
Shokuhi et al., 2010; Cooper et al., 2006).This
method is based on the assumption that if a given
producer A is able of producing Y(A) units of out-
put from X(A) units of input, then other producers
should also be able to do the same if they were
to operate efficiently. In a similar way, if pro-
ducer B is able of producing Y(B) units of output
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with X(B) inputs, then other producers should
also be capable of the same production syllabus.
Producers A, B, and others can then be com-
bined to form a mixture producer with mixture
inputs and outputs, respectively. As regards, this
mixture producer does not necessarily exist, it
is known as the "virtual producer". Mainly,the
heart of the DEA method lies in finding the best
virtual producer for each real producer. If the
virtual producer result in making more output
with the same input or making the same output
with less input then the original producer is in-
efficient. The DEA method is an alternative
non-parametric approach. In other words, no
need to adopting specific production functions
for relate inputs with outputs, theevaluation of
the efficiency of the system is done with empir-
ical data. The DEA in particular can be carried
out either with the assumption of Constant Re-
turns to Scale (CRC) according to the model of
(Charnes et al., 1978). CRS means that the pro-
ducers are able to linearly scale the inputs and
outputs without increasing or decreasing effi-
ciency, i.e. if for example the number of the X
(productive factors or inputs) is doubled, then
the quantity of the Y (outputs( is doubled as
well. It is an important point that classical
model presented by Cooper et al. in 1978 is on
the basis of Farrellâ€™s work in (Farrell, 1957)
and so-called CCR model. Also DEA can be
carried out either with the assumption of Vari-
able Returns to Scale (VRS) according to the
model of (Banker et al., 1984). DEA dedicate a
grade of 1 to a unit only when comparisons with
other relevant units do not provide evidence of
inefficiency in the use of any input or output.
Hence, DEA dedicate an efficiency grade less
than one to (relatively) inefficient units. To un-
derstand what is necessary to explain that these
grades indicates the radial distance from the es-
timated production frontier to the DMU under
consideration.  

Generally, the main body of this paper de-
voted to the analysis of the LQCD data (rather
with temporal extent Nτ=4,6) using DEA
method assuming Constant Returns to Scale
(CRC) according to the classical model of
CCR (Charnes et al., 1978). We also according
to AP method (Khodadi & Seangi, 2014) rank-
ings DMUs obtained from simulation on the

LQCD, separately. Finally, presented a brief
discussion on the results extracted from the
DEA-CCR model in this paper and the main
framework of the LQCD. 

OVERVIEW OF THE CCR MODEL 
In this section, we plan to overview one of the

most basic DEA models, the CCR model, which
was initially proposed in (Charnes et al., 1978).
There, for each DMU, we formed the virtual input
and output by weights αr and βr, respectively 

IV=α1x1o+α2x2o+.......+αmxmo;  
OV=β1 y1o+β2 y2o+.......+αs xso, (1)

Where IV, OV refer to virtual input and output,
respectively. Then we tried to characterize the
weight, using linear programming so as to max-
imize the ratio 

(2)

Note that the optimal weights may vary from
one DMU to another. Suppose there are n
DMUs: {DMU1,DMU2,.....DMUn}. Input and
output items for each of DMUs should have in-
cluded two common features. First of all, numer-
ical data are available for each input and output,
with the data assumed to be positive for all
DMUs. Latter, the items, inputs, outputs and
choice of DMUs, should reflect an analyst’s in
the components that will enter into the relative
efficiency evaluations of the DMUs. Now, as-
sume m input items and s output items are se-
lected by preserving these two features. So, the
input and output data for DMUj be
{x1j,x2j,..........,xmj} and {y1j, y2j, .........., ymj}, re-
spectively. Accordingly, the input data matrix
Xm×n and the output data matrix Ys×n can be
arranged as follows  
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(3)

For instance, xmj refer to mth input of jth DMU
or ymj refer to mth output of jth DMU. Given the
data, we measure the efficiency of each DMU
once and hence need n optimizations, one for each
DMUj to be evaluated. So, to obtain valuesfor the
input "weights" αi and the output "weights" βr as
variables, must be solved the following fractional
programming (FPo) 

(4)

subject to 

j=1,2,....,n, αi, βr≥0. (5)

So that, o ranges over 1,2,.....,n. The constraints
(5) mean that the ratio of "virtual output" to "vir-
tual input" should not exceed 1 for every DMU.
Indeed, the aim is to obtain weights βr and αi that
maximize the ratio of DMUo. By virtue of the
constraints, the optimal (maximum) objective
value θ* is more than 1. Next, we replace the
above FPo by the following linear program LPo

Maxθ=β1 y1o+β2 y2o+.......+βs xso, (6)

subject to 
α1 x1o+α2 x2o+.......+αm xmo=1,

β1y1j+.......+βsxsj≤α1x1j+.......+αmxmj; (j=1,2,....,n),
α1,α2,...,αm≥0; β1,β2,...,βs≥0. (7)

Based on the two Theorem in (Anderson & Pe-
tersen, 1933; Khezrimotagh et al., 2012), the FPo

is equivalent to LPo and are units invariant. In
other words, them have the same optimal objec-
tive value θ* and are independent of the units of
measurement used in the sense that, multiplica-
tion of each input by a constant λi>0,i=1,...,m and
each output by a constant γr>0,r=1,...,s does not
change the obtained solution. In here we can then
identify that DMU0 is CCR-efficient if θ*=1 and
there is at least one optimal (α*,β*) with α*>0 and

β*>0. Otherwise, DMU0 is CCR-inefficient.
Thus, CCR-inefficiency means that either θ*<1
or θ*=1 and at least oneelement of (α*,β*) is zero
for every optimal solution of LPo. As a result,
(α*,β*) are the set of most favorable weights for the
DMUo in the sense of maximizing the ratio scale. 

AP RANKING MODEL
In the DEA, one may be faced with a set of ef-

ficient DMUs. On the other, CCR is not capable
of ranking technical efficient DMUs. Hence,
ranking efficient DMUs is become as a most in-
teresting discussion for large number of DEA re-
searches. So far, diverse DEA models have been
formulated for ranking efficient DMUs. As ex-
ample in (Charnes et al., 1973; Charnes et al.,
1962) a brief review is made â€‹â€‹by authors,
so that to learn more about the details, one can
refer to the references. In the present paper, par-
ticular focus is on the classical modified model
formulated by Andersen and Petersen (AP) in )
Khodadi & Sepangi, 2014). In short, it is based
upon comparison of technical efficient DMUs
than a reference technology spanned by other
DMUs (Cheng et al., 2008). More precisely, this
method is based on the position of each removed
efficient DMU in relation to its corresponding
new Production Possibility Set (PPS) (Charnes
et al., 1973). AP modified model proposed as

(8)
So that, ur ≥ ϵ, r=1,2,.....,m and νi ≥ ϵ, i=1,

2,.....,m. and its dual is 

(9)
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So that λj≥0, j=1,.......,n, j≠0, si-≥0, i=1,.....,m
and sr+≥0, r=1,.....,s.  

It should be emphasized that, efficiency ob-
tained in this method, does not change the per-
formance of the inefficient DMUs in DEA-CCR
model. In AP method removing any of the DMUs
on the efficient frontier, the new PPS will be con-
structed on the basis of remain efficient DMUs.
So, production frontier will be shifted so that the
efficiency of the DMU will be determined based
on the distance of the new frontier. 

LATTICE QCD DATA WITH Nτ=4,6
At the beginning of this section, we would pre-

fer recall some basic thermodynamic relations,
to start our discussion of QCD thermodynamics
on the lattice. Usually all thermodynamic quan-
tities follow from pressure, however in lattice
QCD it is convenient to introduce a dimension-
less quantity called the “interaction measure”
(Cheng et al., 2006). Indeed, the interaction
measure is the trace of the energy momentum
tensor Θμμ (T) divided by T4 which in terms of a
derivative of the pressure with respect to temper-
ature, is defined as 

(10) 

All other bulk thermodynamic observables, e.g.
p/T4 and ε/T4 are derived from (10). As example
be obtained the pressure from Θμμ (T) through in-
tegration of (10)

(11)

[T0] is the temperature for the lower integration
limit. Conveniently, [T0] be set in hedonic phase
of QCD. In lattice QCD thermodynamics, tem-
perature is given in terms of the temporal α,
T=1/(Nτ α(β)) [NT] and lattice spacing  

It is very interest that lattice spacing is con-
trolled via lattice gauge coupling 

β=6/g2

In generally, all observables that are derived on
the lattice, are functions of the gauge coupling  β
With avoid mentioning details, (10) in terms of
observables compute in lattice calculations at
zero and non-zero temperature with three flavor
quarks (β), be written as (Cheng et al., 2008)

(11,12)       

In here, < :::: >_;0 refers to expectation values
evaluated on _nite temperature and zero tem-pre-
mature lattices of size N3 _N_ , respectively. Of
course zero temperature lattices, corresponds on
lattices with large temporal extent, i.e. N_ & N_.
Term h (T) T4 = 0 since Rh vanishes on the line
of constant physics (LCP)1. For further review
and understanding more accurate computational
details, one can refer to Refs (Cheng et al., 2008
Cheng et al., 2006; Aoki et al., 2006; Huovinen
& Petreczky, 2010) . But our main purpose in this
section (overall the whole paper) present a DEA
from data on lattice QCD (with temporal extent
N_ = 4; 6) reported in (Cheng et al., 2008).

Lattice QCD data with N_ = 4; 6
In (Cheng et al., 2008) authors reported on a

calculation of bulk thermodynamics in QCD with
a tree level

Symanzik improved gauge action and an im-
proved staggered fermions action. They in a wide
range of temperatures (140MeV _ T _ 800MeV),
carry out simulations with two degenerate light
quark masses (u; d) and a heavier strange quark
(s) on lattices with temporal extent  N_ = 4; 6,
respectively. Preferably, in this subsection focus
on lattice QCD data with N_ = 4. After sorting
data reported in Tables III and IV in (Cheng et
al., 2008) , let us consider 19 DMUs with eight
inputs and two outputs in Table 1. Needless to
say that inputs x1::::::x8 refer to the values ob-
tained in the simulation for quantities such as _,
ms=ml, < SG >0, < _    >l;0, < _    >s;0, < SG >_
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, < _    >l;_ , < _    >s;_ , respectively. Also out-
puts y1 and y2 refer to the values obtained in the
simulation for thermodynamics quantities such
as "�3pT4 and p=T 4, respectively. Now hat
we've indented the input and output variables,
can using CCR model be measured the efficiency
and performance of each DMUs. The results of
data analysis Table 1, are reported in Table 2. In
the last column of Table 2, using the AP model
of DEA were able to rank the efficiency of each
units of lattice QCD data with N4 in terms of
their performance. As can be seen, DMU18 and
DMU17 have _rst and last grade, respectively.
This indicates that the DMU18 is as a reference
for other DMUs, since it has achieved the best
possible outcomes. One with refer to linear pro-
gramming (6) will found that there constraints (7)
is included. On the other hand, in mathematics,
a constraint is a condition of an optimization
problem that the solution must satisfy. There are
several types of constraints, equality constraints
and inequality constraints.

In an optimization problem, introducing a slack
variable substitute an inequality constraint with
an equality constraint )Boyd & Vandenberghe,
2004). Indeed, a slack variable is a variable that
is added to an inequality

constraint to transform it to an equality. Should
be explained that the values of these variables

must be greater than or equal to zero. In gener-

ally, If inequality and equality constraint holds
(7) together at the optimal point, the constraint

(7) is known as the binding, as the optimal point
cannot be varied in the direction of the constraint
even though doing so would improve the value
of the linear programming (6). Explicitly, binding
constraint is associated with the zero value of
slack variable. According to the data presented
in Table 1, the values of slack variables for each
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DMU X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

3.460
3.760
3.540
3.277
3.570
3.335
3.351
3.382
3.410
3.150
3.490
3.510
3.240
3.920
3.630
3.690
3.210
3.820
3.290

0.313
0.13
0.240
0.765
0.212
0.62
0.591
0.52
0.412
1.1
0.29
0.259
0.9
0.11
0.17
0.15

1
0.125
0.65

4.04471
3.580005
3.89302
4.5166
3.84392
4.36041
4.3188
4.23499
0.19922
4.82564
3.9845
3.94694
4.61441
3.396477
3.75291
3.669908
4.68944
3.508124
4.47696

0.0573
0.00578
0.0281
0.20232
0.02176
0.1542
0.1417
0.1151

0.09013
0.28727
0.04424
0.03657
0.23156
0.002967
0.013176
0.00874
0.25284
0.004467
0.18807

0.11734
0.027805
0.07513
0.2983

0.062829
0.24425
0.23045
0.19922
0.16256
0.392677
0.10072
0.08764
0.33395
0.019635
0.045175
0.035734
0.358813
0.024666
0.27506

4.00931
3.57727
3.87812
4.5001
3.83212
4.28541
4.2453
4.16623
4.10463
4.82413
3.95941
3.92564
4.60904
3.39538
3.74581
3.66559
4.68525
3.5062
4.45142

0.007148
0.001998
0.004627
0.17784
0.003904
0.04964
0.03744
0.01875
0.011657
0.28165
0.006156
0.0052568
0.21962
0.001544
0.002912
0.002431
0.24357
0.001628
0.15132

0.06878
0.019966
0.045837
0.28688
0.038807
0.19082
0.17423
0.10229
0.13797
0.39082
0.060172
0.05183
0.3292

0.015434
0.029047
0.024276
0.35522
0.016268
0.25654

3.57
0.404
1.678
3.18
1.378
10.77
9.68
5.56
7.7
0.54
2.668
2.249
1.23
0.188
0.896
0.592
1.03
0.273
4.61

3.5917
4.6498
4.1974
0.3208
4.3116
1.0757
1.4748
2.8435
2.2418
0.0639
3.8864
4.0322
0.206
4.7156
4.4751
4.5789
0.1492
4.683
0.4037

Table 1:19 DMUs (eight inuts and two outputs) obtained from simulation on the LQCD  whit N4=4

DMU Score Rank

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1
1

0.90874
0.301149

1
1
1
1
1

0.406675
0.732022

1
0.134939

1
1
1

0.109477
1

0.433896

2
3
13
17
6
7
8
9
10
16
14
12
18
11
5
4
19
1
15

Table 2: performance  score and ranking data in Table 1



inputs and outputs is listed in Table 3. According
to Table 3, if S variables For each of the units is
zero then that particular DMU is efficient. Oth-
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DMU Score S-(1) S-(2) S-(3) S-(4) S-(5) S-(6) S-(7) S-(8) S+(1) S+(2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1
1

0.908
0.301

1
1
1
1
1

0.406
0.732

1
0.134

1
1
1

0.1094
1

0.4338

0
0

1.174
0
0
0
0
0
0

0.685
0
0
0
0
0
0
0
0
0

0
0

0.968
0.047

0
0
0
0
0

0.306
0.307

0
0.046

0
0
0

0.0478
0

0.0166

0
0

0.372
0.07

0
0
0
0
0

0.405
0.013

0
0.061

0
0
0

0.0612
0

0.0761

0
0
0

0.015
0
0
0
0
0

0.0832
0
0

0.013
0
0
0

0.0128
0

0.0156

0
0

0.014
0.017

0
0
0
0
0

0.0985
0.009

0
0.015

0
0
0

0.0151
0

0.0148

0
0

1.282
0.087

0
0
0
0
0

0.425
0.7467

0
0.0703

0
0
0

0.0684
0

0.0971

0
0
0

0.038
0
0
0
0
0

0.109
0
0

0.024
0
0
0

0.0224
0

0.044

0
0

0.006
0.003

0
0
0
0
0

0.118
0.004

0
0.022

0
0
0

0.0206
0

0.0296

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.0567

Table 3: The values of slack variable for 19 DMUs obtained from simulation on the LQCD with Nr = 4(Tabl)

Fig.1. Trace anomaly " � 3p in unite of T4 versus
gauge coupling constant _ obtained from calculations
on lattices with temporal extent N_ = 4 (according to
Tables 1 and 2): efficient data (Solid balls), mix data
(Green solid balls). Some of solid balls and green

solid balls are inseparable.

Fig.3. Trace anomaly "�3p in unite of T4 versus
gauge coupling constant _ obtained from calcula-
tions on lattices with temporal extent N_ = 6 (ac-
cording to Tables 4 and 5): efficient data (Solid

balls), mix data (Green solid balls).

Fig.2. pressure p in unite of T4 versus gauge cou-
pling constant _ obtained from calculations on lat-

tices with temporal extent N_ = 4 (according to
Tables 1 and 2): efficient data (Solid balls), mix data
(Green solid balls). Some of solid balls and green

solid balls are inseparable.

Fig.4. pressure p in unite of T4 versus gauge cou-
pling constant _ obtained from calculations on lat-

tices with temporal extent N_ = 6 (according to
Tables 4 and 5): efficient data (Solid balls), mix

data (Green solid balls).



erwise, even if one of the variables is not zero, it
DMU is inefficient. It is very interest that the val-
ues of Table 3 are indicative the strengths and
weaknesses each of inputs or outputs a septic
DMU. The data in Table 2 can based on effi-
ciently be divided into two categories, E = 1 and
E < 1. We prefer to call these two categories, ef-

ficient and inefficient data, respectively. In fol-
low we plan to based on the two categories of
data, consider the behavior of two QCD thermo
dynamical quantity, trace anomaly "�3p T4 and
pressure p. In gores 1 and 2 using data Tables 1
and 2, is drawn the behavior of "�3p T4 and p in
term of _ for set of gauge couplings, _ 2 [3:15;
3:92]. As can be seen, in bothgure, efficient data
(or reference data) overlap with mix data for val-
ues _c _ 3:335.

In other words, data obtained in Tc; ::::; Thigh
(phase transition to quark - gluon plasma) are ef-
ficient and reference. Surprisingly, among the
fteen data (_ _ _c), twelve are efficient but even
a low-temperature data (hadron phase)_ < _c is
not efficient.

Let us here, repeat the same data envelopment
analysis that was done in above, but this time using
the data reported in Tables III and V in (Cheng et
al., 2008) on lattices with temporal extent N_ = 6.

After sorting , preferably consider 20 DMUs
with eight inputs and two outputs in Table 4. The

results of CCR model and slack variable also
are summarized in Tables 5 and 6, respectively.

Similar to Table 2, the last column of Table 5,
indicates the ranking of each of the DMUs. The

results reported in Table 5 refers to the fact that,
DMU19 and DMU1 are The most efficient

and inefficient data, respectively. From data Ta-
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DMU X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

3.335
4.08
3.382
3.690
3.420
3.430
3.445
3.820
3.760
3.470
3.490
3.510
3.540
3.570
3.630
3.410
3.460
3.455
3.920
3.351

0.62
0.081
0.52
0.15
0.39
0.37
0.344
0.125
0.13
0.295
0.29
0.259
0.240
0.212
0.17
0.412
0.313
0.329
0.11

0.591

4.36044
3.234961
4.23499
3.669908
4.13616
4.11217
4.07770

3.5088124
3.580005
4.02346
3.9845
3.94649
3.89302
3.84392
3.75291
0.19922
4.04471
4.05605
3.396477
4.3188

0.1542
0.001546

0.1151
0.00874
0.08303
0.07606
0.06650
0.004467
0.00578
0.05237
0.04424
0.03657
0.0281
0.02176
0.013176
0.09013
0.0573
0.06098
0.002967
0.1417

0.24425
0.012779
0.19922
0.035734
0.15304
0.14364
0.130718
0.02466
0.027805
0.109388
0.10072
0.08764
0.07513
0.062829
0.045175
0.16256
0.11734
0.12314
0.019635
0.23045

4.3598
3.23433
4.2333
3.66697
4.13075
4.10498
4.06634
3.506568
3.57801
4.00834
3.97023
3.93393
3.88347
3.83671
3.74830
4.15710
4.02913
4.04126
3.395328
4.31701

0.15242
0.001140
0.11103

0.002765
0.07214
0.06110
0.04231
0.002035
0.002225
0.01715
0.01187

0.008204
0.006247
0.004923
0.0034263
0.08251
0.02374
0.02928
0.001676
0.13865

0.2436
0.011397
0.1977
0.02753
0.1481
0.1367
0.1193

0.020324
0.022203

0.0911
0.0818
0.0682
0.0574
0.0473
0.03389
0.1594
0.1006
0.1078

0.016750
0.2292

0.51
0.599
0.97
2.09
2.68
3.57
5.64
1.23
1.49
7.73
7.58
6.80
5.48
4.31
2.98
1.58
7.82
7.39
0.973
1.19

0.048
4.7085
0.1393
3.936
0.334
0.44
0.676
4.313
4.168
1.288
1.778
2.2005
2.712
3.092
3.613
0.260
1.024
0.898
4.505
0.068

Table 4: 20 DMUs (eight inputs and two outputs) obtained from simulation on the LQCD with Nr=6

DMU Score Rank

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.067
1

0.127531
1

0.346719
0.460515
0.724368
0.999156
0.998026

1
1

0.6288
1
1
1

0.207738
1

0.94638
1

0.157124

20
3
19
5
16
15
13
10
11
9
8
14
7
6
4
17
2
12
1
18

Table 5: performance Score and ranking data in Table 4



bles 4 and 5, used for drawing the behavior of
"�3p T4 and p in term of _ for set of gauge

couplings, _ 2 [3:335; 4:08], in _gures 3 and 4.
Clearly, efficient data (or reference data) overlap
with mix data for values _c _ 3:445. We observe
similar behavior with the _gures 1 and 2, hence
can conclude that here also, data obtained in Tc;
::::; Thigh (phase transition to quark column
plasma) are efficient and reference. In here also,
even a low-temperature data (hadrons phase) is
not efficient.

DISCUSSION AND CONCLUS1ONS
Data envelopment analysis (DEA) is a non-

parametric method in operations research for the
estimation of production frontiers. It is used to
empirically measure productive efficiency of de-
cision making units (DMUs). Despite the fact
that DEA has a strong relationship to pro-duction
theory in economics, the tool is also used for
benchmarking in operations management, where
a set of measures is selected to test the perform-
ance of manufacturing and service op-elations.
In the condition of benchmarking, the efficient
DMUs, as denned by DEA, may not necessarily
form a production frontier, but rather lead to a
best-practice frontier. Hence we prefer in this
paper, using DEA method, study on the best data
set (the most efficient data set) from simulations

on the lattice QCD with extent temporal N_ = 4;
6, respectively(Cheng et al., 2008).

After analyzing the data table, each of these
two cases, efficient data sets are reported as:

fDMU1;DMU2;DMU5;DMU6;DMU7;DMU8
;DMU9;DMU12;DMU14;DMU15;DMU16;DM
U18g and fDMU2; DMU4; DMU10; DMU11;
DMU13;DMU14;DMU15;DMU17;DMU19g,
respectively.

This result is very interesting to note that none
of these DMUs does not belong to the low tem-

prelature ( _ < _c i.e. conferment phase). To
better understand the issue, we prefer data in
terms of efficiency divided into three categories
as: e = 1, 0:9 _ e < 1 and e < 0:9. With refers to
Tables 2 and 5, one will realize that all low tem-
perature data belong to the third category i.e. e <
0:9. This means that the low-temperature data in
terms of efficacy, are the worst. Here we would
like to _nd a connection between efficient data
set and main characteristic of LQCD.

It is importance for note that free asymptotic in
high temperature (_ ! 1) is corresponds to the
continuum limit i.e. a ! 0. To be more precise, in
this limit conferment region of the coupling con-
nected to the weak coupling region. Of course if
this connection is smoothly then the transition
will not happen. Otherwise we are dealing with
rest or second order phase transition. As annual
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DMU Score S-(1) S-(2) S-(3) S-(4) S-(5) S-(6) S-(7) S-(8) S+(1) S+(2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.067
1

0.127531
0

0.346719
0.460515
0.724368
0.999156
0.998026

1
1

0.6288
1
1
1

0.207738
1

0.94638
1

0.1571

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.021
0

0.027
0

0.028
0.027
0.023
0.0061
0.0023

0
0

0.059
0
0
0

0.023
0

0.015
0

0.045

0.031
0

0.37
0

0.047
0.047
0.036
0.084
0.096

0
0

0.201
0
0
0

0.042
0

0.016
0

0.063

0.006
0

0.007
0

0.0091
0.008
0.0068
0.0001
0..001

0
0

0.015
0
0
0

0.007
0

0.0035
0

0.013

0.008
0

0.011
0

0.012
0.012
0.010
0.0013
0.0007

0
0

0.027
0
0
0

0.011
0

0.0056
0

0.018

0.032
0

0.039
0

0.051
0.051
0.039
0.084
0.096

0
0

0.196
0
0
0

0.045
0

0.017
0

0.065

0.0087
0

0.0114
0

0.016
0.017
0.013
0.0001

0.000005
0
0

0.030
0
0
0

00.013
0

0.0052
0

0.018

0.009
0

0.013
0

0.016
0.017
0.0139
0.0011
0.0005

0
0

0.022
0
0
0

0.0139
0

0.007
0

0.020

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.018
0
0
0

0.0162
0.0275
0.061

0
0
0
0
0
0
0
0
0
0

0.069
0

0.087

Table 6: The values of slack variable for 20 DMUs obtained from simulation on the LQCD with Nr=6 (Table 4)
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DMU.No18 Data Projection Difference Percent
x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

Score 
DMU.NO17
x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

Score

3.82
0.125

3.508124
0.004467
0.024666
3.5062

0.001628
0.01628
0.273
4.683

1
-

3.2
1

4.68944
0.25284
0.358813
4.68525
0.24357
0.35522

1.03
0.1492

0.109477

3.82
0.125

3.508124
0.004467
0.024666
3.5062

0.001628
0.016268

0.273
4.683

-
-

0.350327
0.0617

0.452166
0.0149
0.0241

0.444515
0.00422
0.0183
1.03

0.1492
-

0
0
0
0
0
0
0
0
0
0
-
-

-2.849673
-0.938292
-4.237274
-0.23794
-0.33468
-4.240735
-0.239349
-0. 336922

0
0
-

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-
-

-89.05
-93.83
-90.36
-94.11
-93.27
-90.51
-98.27
-94.85
0.00
0.00

-

Table 7: Results derived from DEA-CCR model for the most efficient and inefficient  DMUs
of LQCD data with Nr=4

DMU.No19 Data Projection Difference Percent
x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

Score 
DMU.NO1
x1

x2

x3

x4

x5

x6

x7

y1

y2

Score

3.92
0.11

3.396477
0.002967
0.019635
3.395328
0.001676
0.01675
0.973
4.5057

1
-

3.335
0.62

4.3604
0.15429
0.24425
4.3598
0.15242

0.51
0.048
0.0677

3.92
0.11

3.396477
0.002967
0.019635
3.395328
0.001676
0.01675
0.973
4.5057

-
-

0.225652
0.0204

0.263785
0.00374
0.00765
0.262769
0.00153

0.51
0.0668

-

0
0
0
0
0
0
0
0
0
0
-
-

-3.109348
-0.599587
-4.096615
-0.150553
-0.236597
-4.097031
-0.237108

0
0.0188

-

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-
-

-93.23
-96.71
-93.95
-97.58
-96.87
-93.97
-97.31
0.00
39.13

-

Table 8: Results derived from DEA-CCR model for the most efficient and inefficient DMUs
of LQCD data with Nr=6



word, results derived from DEA-CCR model,
implies that efficient data set appear in contin-
uum limit a ! 0.

APPENDIX
In this section, the certain outputs by running

the CCR model for the most efficient and ineffi-
cient DMU obtained from simulation on the

lattice QCD with extent temporal N_ = 4; 6,
listed in Tables 7, 8, respectively. For a deeper
understanding of the numbers reported in each of
the two tables, it is necessary explanations are
given. In "Data column" is included the informa-
tion of input and output a DMU. "Projection col-
umn" indicate that each of the inputs and outputs
have spent much of their initial data and how
much output is produced on the basis of their
consumption. "Difference column" numbers
mean the difference between the initial amount
and the amounts are consumed. value of zero
means complete production and consumption.

Non-zero value indicates the amount of short-
ages and surpluses. The lack of input in order to

produce the desired output. The "Percent col-
umn" indicates the decency of values according

to the percentage. In other words, the numbers
given in this column indicate weakness in the

process of making data. Consequently, if all the
numbers listed in the Difference and Percent

columns are zero, then the DMU under consid-
eration would be efficient.
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