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Abstract
In the petroleum supply chain, oil refined products are often de-

livered to distribution centers by pipelines since they provide the
most reliable and economical mode of transportation over large dis-
tances. This paper addresses the optimal scheduling of a complex
pipeline network with multiple branching lines. The main challenge
is to find the optimal sequence and time of product injections/de-
liveries at input /output nodes in order to satisfy product demands
with minimum costs. We propose a mixed integer linear problem
(MILP) approach that is capable of detecting the interface volumes
in any pipeline and managing the simultaneous deliveries to distri-
bution depots. Numerical examples are solved to validate the pro-
posed model.
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INTRODUCTION
Distribution of oil derivatives (kerosene, gasoil,
gasoline, and jet fuel) is perhaps the core com-
ponent of oil supply chain. Transfer operations
of oil derivatives (hereafter as products) can be
carried out by road, railroad, vessel and pipeline,
among which the latter represents the most reli-
able and cost-effective way of transportation. A
measure of the pipeline importance is the fact
that about 70% of crude oil and its derivatives in
the US are shipped by them (Cafaro & Cerdá,
2004).
Refineries can be connected to local distribution
centers through different pipeline configurations,
which range from straight to tree-like and mesh
structures. Most pipelines transport a variety of
products back to back without any physical bar-
rier separating the in-transit products. This issue
leads to a contamination volume (interface vol-
ume) between two adjacent products. The inter-
face volume, depending on the type of adjacent
products, needs to be reprocessed at a refinery
and the cost concerning this process is very high.
To this end, the pipeline operators should se-
quence products inside the pipelines with the
minimum number of interfaces.
Lot sizing and scheduling problems have re-
ceived a great deal of attention over the last
decades. Main decisions on pipeline scheduling
problem concern the optimal sequence, length
and starting time of pumping operations at a re-
finery (aggregated schedule) and the optimal se-
quence, size and time of delivery operations at
depots (detailed schedule) to meet product de-
mands during a known scheduling horizon at
minimum total cost. Most scheduling models for
pipelines are based on discrete or continuous
time MILP frameworks. In discrete time models
the horizon length is divided into a number of
time slots of equal and fixed durations (Rejowski
& pinto, 2003; Magato et al., 2004) whereas in
continuous time representations the time-slot
length is selected by the optimization (Boschetto
et al., 2010; Cafaro & Cerda, 2004; Relvas et al.,
2006; Cafaro & Cerda, 2008; Cafaro & Cerda.,
2009; Cafaro & Cerda, 2012a; Cafaro & Cerda,
2012b; Cafaro et al., 2012; Ghaffari-Hadigheh &
Mostafaei, 2015; Cafaro et al., 2015; Mostafaei
et al., 2016; Mostafaei & Castro, 2017;  Castro

&  Mostafaei, 2017; Mostafaei et al., 2015;
Mostafaei & Castro, 2018; Castro &  Mostafaei,
2019;  Taherkhani, 2018; Castro, 2017; Cafaro &
Cerda, 2011; Taherkhani et al., 2017).
Aggregate scheduling models for pipelines gen-
erally have two major limitations: (1) they do not
determine in which sequence to transfer products
to distribution depots, and (2) they do not con-
sider flow rate limitations in pipeline segments.
In turn, detailed scheduling models overcome
these limitations and reduce the energy con-
sumed for restarting flow in inactive pipeline
segments by optimally determining the sequence
of product deliveries. In past few years, several
papers have addressed the detailed scheduling of
pipelines with different structures involving
straight pipelines with a single refinery and mul-
tiple depots (Cafaro et al ., 2012; Ghaffari-
Hadigheh & Mostafaei, 2015), straight pipelines
with multiple refineries and depots (Cafaro et al.,
2015; Mostafaei et al., 2016; Mostafaei & Castro
2017;  Castro &  Mostafaei, 2017) tree-like
pipelines (Mostafaei et al., 2015; Mostafaei &
Castro, 2018; Castro &  Mostafaei, 2019;
Taherkhani, 2018) and mesh structure pipelines
(Castro 2017).   
Cafaro and Cerda (Cafaro & Cerda, 2011) devel-
oped the first continuous time MILP model for
the aggregate scheduling of a multi-level tree like
pipeline, where products injected to the mainline
can be branched to secondary lines and re-
branched to lower level pipelines (split lines).
The pipeline system connects a single refinery at
the origin of the mainline to the multiple distri-
bution centers. The problem goal is to satisfy
product demand through a single due date sched-
uling horizon at minimum pumping, interface,
idle transport capacity, and inventory carrying
costs. In contrast, Taherkhani et al. (2017) intro-
duced a MILP framework for a multi-level tree
like pipeline which can be fed by multiple re-
fineries located on the mainline. Moreover, the
approach considers dual purpose nodes on the
mainline, and multiple due dates for product de-
mand at distribution centers.  
Previous models on the scheduling of two-level
treelike pipelines (Cafaro & Cerda, 2011;
Taherkhani et al., 2017)
(Cafaro & Cerda, 2011; Taherkhani et al., 2017)
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neither consider simultaneous deliveries to dis-
tribution depots nor handle flow rate limitations
in pipeline segments of lower diameters. In this
paper, we relax these assumptions by developing
a continuous time mixed integer linear program-
ming (MILP) model.  The model can be regarded
as an upgrade version of the MILP approaches in
(Mostafaei, 2015; Castro, 2017; Taherkhani et
al., 2017). The proposed model rigorously han-
dles flow rate limitations and optimally se-
quences oil products in the pipeline branches.
Moreover, in contrast to the recent works on the
detailed scheduling of pipeline, the proposed
model rigorously considers the interface volume
constraints and penalizes the interface cost in the
objective function. The problem aims to find the
optimal sequence of injection and delivery oper-
ations that meet product demand at minimum
costs including pumping, interface, backordered
demand and pump operating costs.

The rest of the paper is structured as follows.
The next section briefly describes the problem
under investigation and presents an MILP repre-

sentation for the problem. In section 3, two case
studies are solved to illustrate the proposed math-
ematical model. The last section provides the
conclusions and some guidelines for future work.

PROBLEM STATEMENT AND
OPTIMIZATION MODEL

This paper deals with the detailed scheduling of
a tree-like pipeline featuring a mainline (pipeline
n0), multiple branching lines (pipelines n1, n2,…
), refineries and distribution depots (see Fig. 1).
The pipeline is fed by refineries and supplies
products to depots. Some nodes can both supply
and receive products to/from the pipeline (known
as dual purpose nodes). Throughout this paper,
we use the terms secondary lines (pipelines n1, n2

and n4 in Fig. 1) and split lines (pipeline n3 in Fig.
1) to refer to the pipelines branched from the
mainline and the secondary lines, respectively.
We use the term “branching line” for a pipeline
that branches from another. In Fig. 1, the pipeline
system features 4 branching lines n1, n2, n3 and
n4.
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Fig. 1.  A multi-product tree-like pipeline with four branching lines (Taherkhani et al., 2017).

As can be observed from Fig. 1, the pipeline
system composes of a set of interconnected seg-
ments, which end with a depot or a branch point.
For example, the secondary line n2 in Fig.1 con-
tains two segments s1n2 and s2n2. Note that depot
sn always locates at the end of segment sn. All
pipeline segments remain full of products at any

time and operate in a single flow direction when
they are operative. To track the location of prod-
ucts inside the pipeline over time, the products
are assigned to batches (lots), with each batch
conveying a single product. The batches inside
pipeline n at time T=0 h are called old batches
(Inold). In Fig.1, for example, the set of mainline’s
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old batches is In0old= {I1, I2, I3, I4}. Note that the
old batch I3 in the mainline is empty, which has
been left by the user for a new product injection
at intermediate refineries (Taherkhani et al.,
2017).The batches that will be transferred to
pipeline n after T>0 h are called new batches
(Innew). Always a batch i+1 will follow a batch i
inside pipeline n. For more information about the
problem sets, refer to our previous work in
(Taherkhani et al., 2017).  
The problem goal is to meet product demand at
distribution depots with minimum pumping, in-
terface and pump operating costs subject to the
following assumptions:
1. Input nodes are considered on the mainline and
can only pump products into the mainline.
2. Flow rate in an operative segment should be
kept in the given domain.
3. Pump rate in an active input node should be
kept in the given range.
4. Product demands requested by depots are de-
terministic data and should be satisfied before the
horizon end.
5. Due to quality reasons, some product se-
quences are forbidden.
6. Inventory of products at refinery tanks is

known during planning horizon.
Motivating example
In contrast to previous works on multi-level tree-
like pipelines (Castro, 2017; Cafaro & Cerda,
2011; Taherkhani et al., 2017), the proposed
model in this paper allows simultaneous deliver-
ies at depots. To illustrate the problem under
study, let us consider a motivating example con-
taining a treelike pipeline with two refineries
(R1-R2), five depots (D1-D5), a secondary line
and a split line. Fig. 2 shows the pipeline system
at time T=0 h, which is filled with 4 old batches
I1 (P2), I2 (P1), I3 (P2) and I4 (P3). Note that
batch I3 is an empty batch and will be filled by
refinery R2. The flow rate ranges at pipeline seg-
ments, product inventory at refineries and prod-
uct demand at depots for the next two days
(scheduling horizon length = 48 h) are given in
Fig. 2.  For example, R12000P3 indicates that the
refinery R1 can inject 2000 m3 of product P3 into
the pipeline over next 2 days. In turn, D11000P3
denotes that depot D1 should receive 1000 m3 of
P3 during the scheduling horizon. The aim is to
meet product demand at distribution depots at
minimum number of pumping runs (cost of exe-
cuting a pumping run = 100$).
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Fig. 2. Pipeline system for motivating example

Fig. 3 shows the optimal detailed schedule for
the motivating example without simultaneous de-
liveries to depots. The optimal cost is 400 $ and
the solution features 4 pumping runs k1, k2, k3
and k4. The first pumping run k1 adds 1000 m3

of product P3 from refinery R1 into the old batch
I4 and transfers 1000 m3 of batch I1 (P2) to the
secondary line to direct the same amount of I2 to

split line and then to depot D5. In run k2, the in-
jection of product P3 in R1 is resumed, the sec-
ondary line becomes idle and the flow goes in the
last segment of mainline to transfer 1000 m3 of
P2 to depot D3. Run k3 involves two simultane-
ous pumping operations at R1 and R2. Refinery
R1 injects 1000 m3 of new batch I5 (I2) and at
the same time 1000 m3 of product P3 are trans-
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ferred to depot D1. Refinery R2 fills the empty
batch I3 with 1000 m3 of product P4 to push 1000
m3 of batch I1 (P2) to depot D3. 

The last run k4 also contains two simultaneous
injections at R1 and R2 and lasts from time 30.00
to 40.00 h. During this time interval, the follow-
ing input and output operations take place: (1) re-
finery R1 adds 1000 m3 of product P5 to batch I5

and directs the same volume of product P3 to
depot D1 and (b) refinery R2 reinserts 1000 m3

of product P4 into the batch I3 to divert 1000 m3

of product P1 (I2) to the secondary line and then
to the split line.  From Fig. 3, the depot require-
ments are satisfied within 40 h (makespan= 40
h) with four pumping runs each lasting 10 h.

Taherkhani / An Improved Optimization Model for ...

Fig. 3. Optimal schedule for the motivating example without simultaneous deliveries

The best detailed schedule with simultaneous
deliveries to depots for the motivating example
is depicted in Fig. 4. In the first pumping run,
2000 m3 of product P3 are added to batch I3 at a
pump rate of 200 m3 /h and at the same time two
depots D3 and D5 start receiving product P2 at a
flow rate of 100 m3 /h. Pumping run k2 involves
the following operations: (a) 2000 m3 of product
P2 (I5) are injected from R1 to simultaneously
deliver 1000 m3 of P3 to depot D1 and 1000 m3

of P3 to depot D3, and (b) empty batch I3 re-
ceives 2000 m3 of product P3 from refinery R2
and pushes 1000 m3 of batch I2 to the last seg-
ment of the mainline and the same volume of I2
to the secondary line. The total cost is 200 $ and
the solution features a makespan of 20 h. This
paper aims to develop a MILP model to consider
simultaneous deliveries to depots while reducing
pipeline operational costs.
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Mathematical model
In this subsection, we introduce a mixed integer

linear programming (MILP) model for the de-
tailed scheduling of a tree-like pipeline with mul-

tiple branching lines, refineries and distribution
depots. The model requires the following sets,
parameters, and decision variables: 
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Fig. 4. Optimal schedule for the motivating example with simultaneous deliveries

Sets

K Pumping runs indexed by k=0, 1,…, |K|, where k=0 describes pipeline at the
start time of scheduling horizon

N Pipelines indexed by n, n'=0, 1,…, |N|
SP Secondary lines (lines emerged from the mainline) (SP⊂N)
SLn Split lines on secondary line n (SLn ⊂N)
R Refineries indexed by r, r'= 1,…, |R|
I Product batches (lots) indexed by i, i', j= 1,…, |I|
Sn Segments of pipeline n indexed by s, s'
Ir Batches that can receive product from refinery r (Ir ⊂I)
Inold Old batches of pipeline n (Inold ⊂I)
Innew New batches of pipeline n (Innew ⊂I)
In Batches to be transported by pipeline n (In=Inold⊂Innew)
InS Batches that can be transferred to depot  sn (Ins ⊂I)
P Products indexed by p, p'
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Parameters
hmax Planning horizon (h)
stf Starting time of the first pumping run (h)
CR Cost of performing a pumping run ($/run)
CPp,r Cost of pumping a unit of product p from refinery r ($/m3)
CIFp,p' Cost of reprocessing a unit of mixing volume  between two products p,p'($/m3)
CB Cost of backorder of a unite product p at depot sn ($/m3)
vrrmin/ vrrmax Min / max pumping rate at refinery  r (m3/h)
vss,nmin/ vss,nmax Min / max flow rate in segment sn (m3/h)
IPVmin/IPVmax Min / max batch injected size in mainline in each run (m3)
IRVnmin/IRVnmax Min / max batch size transferred  to branch line n in each run (m3)
DPVs,nmin/ DPVs,nmax Min / max batch size transferred  to depot sn in each run (m3)
θr Coordination of refinery r on the mainline (m3)
σn Coordination of secondary line n on the mainline (m3)
δn,n' Coordination of split line n' one the secondary line n (m3)
τs,n Coordinate of depot sn on pipeline n (m3)
ρs,n Volume of pipeline n between its origin and end of segment sn (m3)
PVn Capacity of pipeline n (m3)
reftp,r Volume of product p at refinery r (m3)
Demands,n,p Demand of product p at depot sn (m3)
MIXp,p',n Mixing volume between products p,p' in pipeline n (m3)
Touchp,p'∈{0, 1} 1 if  products p and p' can touch each other in pipeline, otherwise 0 (m3)
ISPVi,n Volume of old batch i in pipeline n (m3)

Variables
STk Start time of run k (h)
LRr,k Activity length of refinery r at run k (h)
Lk Length  of run k (h)
Backp,s,n Backordered demand of product p in depot sn (m3)
IPVi, r, K Volume of lot i pumped from refinery r at run k ( m3)
PPVi, p, r, k Volume of lot i of product p pumped from refinery r at run k ( m3)
IRVi, k, n Volume of lot i∈In transferred  to branching line n during run k ( m3)
DPVi, s, k, n Volume of lot i∈Ins transferred to depot sn at run k ( m3)
PDPVi, p, s, k, n Volume of lot i∈Ins of product p transferred to depot sn at run k ( m3)
LPVi, k, n Upper coordinate lot i in pipeline 𝑛 at the end of run k ( m3)
SPVi,k,n Volume of lot i in pipeline 𝑛 at the end of run k (m3)
INFTi, p, p',n0 Interface volume between batches ip and (i-1)p^' in pipeline n ( m3)
λi, r,k∈{0,1} 1 if lot i∈Ir is pumped at refinery r during run k
ui, k, n∈{0, 1} 1 if lot i is transferred to secondary line n during  run k
uri, k, n, n'∈{0, 1} 1 if lot i is transferred from secondary line n to split line n' during run k
xi, s, k, n∈{0,1} 1 if lot i∈Ins is transferred to depot sn during run k
yi, p∈{0, 1} 1 if  lot i is of product p
zi, n∈{0, 1} 1 if lot i exists in branching line n
vs, n, k∈{0, 1} 1 if  segment sn is active in run k
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The MILP formulation of the problem is as fol-
lows (Eq. 1-59).

(1)

Subject to:

(2)

(3)

(4)

LPVi,k-1, n0≥θr.λi, r, k,    ∀i∈Ir , k∈K, r∈R, (5)

LPVi+1, k-1, n0)≤θr+(PVn0-θr ).(1-λi, r, k),    
∀i∈Ir , k∈K, r∈R, (6)

λi, r, k.IPVmin≤IPV〗i, r, K≤λi, r, k.IPVmax ,    
∀i∈Ir , k∈K, r∈R, (7)

(8)

(9)

(10)

(11)

(12)

(14)

(15)

(16)

LPVi, k-1, n≥τs, n.xi, s, k, n ,∀i∈Isn , 
k∈K, s∈S, n∈N,                  (17)

LPVi, k, n-SPVi, k,n≤τs, n+(PVn-τs, n)(1-xi, s, k, n),   
∀i∈Isn , k∈K, s∈Sn , n∈N, (18)

xi, s, k, nDPVmin≤DPVi, s, k, n ≤ xi, s, k, nDPVmax,   
∀i∈Isn ,k∈K, s∈Sn , n∈N, (19)

(20)

(21)

(22)

LPVi, n0, k-1≥σn ui, n, k ,∀i∈In , 
n∈SP, k∈K (k≥1), (23)

LPVi+1, n0, k)≤σn+(PVn0-σn)(1-ui, n, k),    
∀i∈In , n∈SP, k∈K (k≥1), (24)

IRVnmin ui, n, k ≤  IRVi, n, k ≤ IRVnmax ui, n, k,    
∀i∈In , n∈SP, k∈K (k≥1), (25)

LPVi, k-1, n≥δn, n' ur, k, n, n',     ∀i∈In , 
k∈K, n∈SP, n'∈SLn , (26)
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LPVi+1, k, n≤δn, n'+(PVn-δn,n^')(1-uri, k, n, n'),      
∀i∈In , k∈K, n∈SP, n'∈SLn , (27)

uri, k, nn' IRVn'min≤IRVi, k, n' ≤ uri, k, n' IRVn'max,     
∀i∈In , k∈K, n∈SP, n'∈SLn, (28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

yi,p+yi+1,p' ≤Touchp,p' +1,   ∀i∈I,p,p'∈P, (40)

(41)

(42)

(44)

Taherkhani / An Improved Optimization Model for...
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vs,n,k≤vs-1,n,k ,∀s∈Sn , s>1,n∈N(n≠n0), k∈K(k≥1),
(45)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

STk=Lk-1+STk-1),       ∀k∈K(k≥2), (58)

STk=stf,    k=1.   (59)

In the model presented above, Eq.1 is the ob-
jective function which minimizes product pump-
ing cost, interface cost between two products,
backordered demand cost and on/off pump oper-
ating cost. Eq.2 states that the pipeline network
receives material if at least one of the refineries
is injecting material. Eq.3 is to detect the upper
coordinate of lot i inside pipeline n at the end of
run k. In fact, the upper coordinate of batch i at
run k is the size of lots i' (i'>i).  In Fig. 2, the
upper coordinate of batch I2 in the mainline is
4000 m3. The upper coordinates of batch I1 are

Taherkhani / An Improved Optimization Model for...
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8000, 4000 and 2000 m3 in the mainline, second-
ary line and split line, respectively.

Eq.4-12 are required to manage lot injections
at refineries. Eq.4 states that at run k, at most one
lot can be pumped from refinery r. A batch i in
the mainline can receive material from the refin-
ery r when its coordinate variables satisfy LPVi+1,

n0, k-1 ≤θr ≤ LPVi, n0, k-1, see Eq.5 and Eq.6. Eq.7
states that the injection volume should be in the
admissible range. Eq.8 states that all new batches
should be pumped during the planning horizon.
Each lot transports only a single product, as im-
posed by Eq.9. Due to Eq.10 and Eq.11, the vol-
ume p injected to batch i from refinery r at run k
is zero if the batch does not convey product p (yi,

p=0) and is equal to IPVi, r, k if the batch is injected.
Eq.12 states that the volume p injected from re-
finery r cannot exceed its stock reft r, p. 

The activity length of refinery r during run k
(LRr, k) is computed through Eq.13 and Eq.14.
Eq.15 states that the activity length of all active
refineries is the same and determines the duration
of pumping run (Lk). Eq.16-22 are needed to con-
trol the product deliveries to distribution depots.
Eq.16 states that at most on batch can be deliv-
ered to a distribution depot during any run k. A
lot i in pipeline n can be transferred to depot s if
its coordinate variables satisfy LPVi+1, n, k ≤τs, n ≤
LPVi, n, k-1, as imposed by Eq.17 and Eq.18. Eq.19
states that the delivery volume to an active depot
should be in the feasible domain. By Eq.20 and
Eq.21, the volume p transferred from batch i to
depot sn at run k will be zero if the batch is not of
product p (yi,p=0) and will be DPVi, s, k, n) if the
batch is delivered to depot sn. Demand should be
fully met during the planning horizon; otherwise
backordered demand cause penalty cost, as im-
posed by Eq.22.

Eq.23-25 aim to transfer a lot i in the mainline
to secondary line n. When a batch i∈In0 is trans-
ferred to the secondary line n, its coordinate vari-
ables satisfy LPVi+1, n0, k ≤σn ≤LPVi, n0, k-1, where
σn is the volumetric coordinate of secondary line
n  on the mainline, Eq.23 and Eq.24. A positive
volume of batch i∈In0 belonging to the interval
[IRVnmin,IRVnmax] will be transferred from main-
line to the secondary line n, if the secondary line
is receiving material from batch i through run k,
Eq.25. The similar constraints can be given for a

batch transferred from a secondary line n to its
split line n', i.e., Eq.26-27

Eq.29-31 computes the size of a batch i in
pipeline n during a run k. For instance, Eq.29
states that the size of batch i in the mainline in-
creases when it receives product from a refinery
and decreases when the batch i is transferred to
depots and secondary lines. Each pipeline n re-
main full with product at the end of any pumping
run k (Eq.30) and consequently when some ma-
terial is input in the pipeline n, the same volume
is discharged from that line, Eq.31-33.

As stated before, there is no separating device
between two products inside the pipeline and
consequently there will be a mixing volume (in-
terface) between them. Eq.36-37 are to detect the
interface volume between two products in the
mainline and branching lines. Lot i will exist in
branching line n if it is transferred through a
pumping run k to that line, Eq.38 and Eq.39.
Some products cannot touch each other inside the
pipeline (due to the huge interface). If product p
allows to touch p' then the binary parameter
Touchp,p' is one. Eq.39-37 are to prevent products
p and p' to touch each other inside a pipeline n if
Touchp,p' =0.

Eq.42-49 are to determine whether a segment
s of pipeline n (segment sn) is active during run
k. If depot sn is active and consequently segment
sn will be active, Eq.42. Eq.43 states that a seg-
ment s of the mainline will be active when refin-
ery r at the start of that segment pumps into the
mainline. Through Eq.44, segment s-1 of main-
line will be active if segment s is active and there
is no injection at refinery r located at the start of
segment s. Since there is no refinery on branch-
ing lines, segment s of branching line n will be
idle if segment s-1 is idle. Due to Eq.46 and
Eq.47, the first segment of a branch line will be
active when it is receiving material from another
pipeline. Eq.48 states that segment s of mainline
featuring secondary line n is active if the second-
ary line is receiving material from the mainline.
Eq.49 expresses that segment s of secondary line
n having split line n' will be active if the split line
is receiving material from the secondary line.

Eq.50-52 are introduced to control the flow rate
restrictions in segments of mainline, secondary
lines and split lines, respectively. Eq.53 states
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that no batch can input from segment (s-1)n0 to
sn0  when refinery r at the start of segment sn0
pumps into the mainline. Through run k, a lot i
in the mainline may be diverted to several sec-
ondary lines and distribution depots on the main-
line. If so, the volume transferred from the lot
i∈In0 to mainline’s secondary lines and depots is
limited through Eq.54 and Eq.55. In turn, Eq.56
and Eq.57 are to manage the volume moved from
a lot i in secondary line n to its depots and its split
lines. Eq.58 states that the start time of pumping
run k is equal to the start time of pumping run k-
1 plus the length of pumping run k-1. The start
time of the first pumping run is a known param-
eter (stf), see Eq.59.

RESULTS 
In this section, we consider two case studies.

The examples are solved with non-simultaneous
and simultaneous delivery modes. In non-simul-
taneous mode (NSIM), there is no simultaneous
product delivery to distribution centers (by
adding ∑i,s,n xi,s,n,k =∑i,r λi,r,k to the model in Sec-
tion 2, we call this equation as Eq. (60)) while in

simultaneous mode (SIM) multiple depots can
receive product from the pipeline during a pump-
ing run. The model for the SIM mode consists of
Eqs. (1-59) and for the NSIM mode consists of
Eqs. (1)- (60). The MILP models are imple-
mented in GAMS /CPLEX and solved on an Intel
(R) core(TM) i5 CPU M430 2.27 GHZ with 4
GB (3.86 GB usable) and 64 bit operation sys-
tem. We adopt as stopping criterion a maximum
computational time of 18,000 CPUs or a relative
optimality tolerance of 10-9. 

Example 1
The pipeline structure for this example is de-

picted in Fig. 5, which is similar to the one con-
sidered by Taherkhani et al. (Taherkhani et al
2017). The pipeline system should transport four
products from two refineries (R1-R2) to five de-
pots (D1-D5) over next 240 h.  At time t=ST=0
h, there are three old batches I1 (P2), I2 (P1) and
I3 (P3), with batch I1 re-branching into the
pipelines N1 and N2. The flowrate in pipeline
segments can vary between 20 and 200 m3 /h. 
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Fig. 5. Pipeline system for Example 1.

The injection rate domain (given in m3 /h) at re-
fineries is [20, 200]. The maximum and mini-
mum volumes transferred to mainline and
branching lines during each run are 4000 and 500
m3, respectively. The same upper and lower
bounds are given for min/max volumes trans-
ferred from a pipeline to an active distribution
center. Other data of the example including in-

ventory and pumping cost at refineries, demand
and interface volume (vol.) and cost can be found
in Table 1. To solve the problem we consider
In0new={I4, I5}, CB=200 $/ m3 and CR=100
$/run.
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Similar to previous works in [17,23], we adopt
an iterative procedure on the elements of set K 
(starting with                                            to deter
mine the optimal solution. When the solution
quality for two consecutive elements k and k+1
is the same, k is the optimal number of pumping
runs. Table 2 shows the computational results for 
Example 1. We start with 

=6 (i.e.,K6={0,1,2,…6}) to solve the 

NSIM and SIM models. With six pumping runs,
SIM faces 4.2% backordered demands while
NSIM encounters 33.61% product shortages at
depots.   

With K7={0,1,2,…7} product demands are met
in SIM and the solution is found at just 16 s,
whereas NSIM again faces backordered demands

(25.21%) and needs 557s to generate a solution
of $1220825. For K8={0,1,2,…8} and
K9={0,1,2,…9}, SIM generates the same solution
of $38505 and so the optimal number of pumping
runs for the SIM model is 8. With 9 pumping
runs, SIM just spends 183s to confirm the solu-
tion obtained using 8 pumping runs, while NSIM
needs a CPU time of 4387s to get the solution of
$824525. From Table 2, one can see that NSIM
cannot meet demand even with 11 pumping runs
up to the maximum computational time of 18000
CPUs. Note that for the same number of pumping
runs, both SIM and NSIM models are roughly
similar in terms of problem size and generate the
same linear relaxed solution, but SIM reaches the
optimum in lower CPU times due to the lower
integrality gaps.
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P
Inventory (10m3) Pump cost ($/m3) Demand (10m3) Interface vol. (m3)/cost($)

R1 R2 R1 R2 D1 D2 D3 D4 D5 P1 P2 P3 P4

P1 1000 2000 3 4 0 0 180 200 100 0 1/15 1/30 1/26

P2 - 1000 - 3 0 0 300 200 100 1/15 0 1/20 1/18

P3 1200 - 1 - 500 100 0 100 0 1/30 1/20 0 1/30

P4 700 600 2 1 200 0 300 0 100 1/25 1/18 1/30 0

Table 1: Data for Example 1

N.Ra CPU(s) Cont. vb Bin. vc Eqs. Bd (%)d P.c ($)e I.c ($)f z ($) Relax z ($) In.gapi

SIMh 6 17 1400 352 2892 4.2 39500 221 240321 29687.5 0.876

SIM 7 16 1556 404 3276 0 40500 221 41421 29682.187 0.283

SIM 8 108 1712 456 3660 0 37500 221 38521 29678.055 0.229

SIM 9 183 1868 508 4044 0 37500 221 38521 29674.75 0.229

NSIMg 6 79 1400 352 2898 33.61 16000 125 1616725 29687.5 0.981

NSIM 7 557 1556 404 3283 25.21 20000 125 1220825 29682.187 0.975

NSIM 8 903 1712 456 3668 21 22500 125 1023425 29678.055 0.971

NSIM 9 4387 1868 508 4053 16.8 23500 125 824525 29674.75 0.964

NSIM 10 6220 2024 560 4438 12.6 25000 125 626185 29672.045 0.952

NSIM 11 18000 2180 612 4823 8.4 32500 180 433780 29669.791 0.931

aNumber of pumping runs; bContinuous variables; cBinary variables; dBackordered demand; ePumping cost; fInterface cost;
gNon-simultaneous delivery mode; hSimultaneous delivery  mode; iIntegrality gap=(z-Relax z)/z

Table 2: Computational results of Example 1

Iranian Journal of Optimization, 11(2), 243-259, December 2019 255



The optimal detailed schedule for Example 1
in simultaneous mode (SIM) with 8 pumping
runs is given in Table 3. From the first row of this
table, for instance, 2000 m3 of product P4 are in-
jected from refinery R1 during time interval

[0.00-25.00] h and 1500 m3 of P3 and 500 m3 of
P2 are transferred to depots D1 and D3, respec-
tively. From this table, product demands are met
within time interval [00.00-210.00] h.
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Time Interval [h]
Output nodes Branchline Output nodes

R1 R2 N1 N2 D1 D2 D3 D4 D5

00.00-25.00 200P4 - - - 150P3 - 50P2 - -

25.00-35.00 200  P4 - - - 150P4 - 50P2 - -

35.00-60.00 100P3 300P1 100P1 - 50P4 50P3 200P2 100P2 -

60.00-110.00 200P3 - 200P1 100P1 - - - 100P2 100P2
110.00-157.50 200P3 - 200P3 - - - - 200P1 -

157.50-175.00 350P3 300P4 100P4 - 300P3 50P3 200P1 100P3 -

175.00-190.00 100P3 300P4 100P4 100P4 50P3 50P3 200P4 - 100P1
190.00-210.00 200P3 - 100P4 100P4 - - 100P4 - 100P4

Table 3: Amount of products transferred to pipelines and depots of Example 1 (in 10 m3).

Example 2
This example concerns a large scale pipeline

distribution system (Taherkhani et al 2017), in
which a pipeline with three branching lines
should convey four products from two refineries
(R1-R2) to seven distribution depots (D1-D7)
over 10-day, see Fig 6. At time t=0, there are four
old batches I1 (P1), I2 (P2), I3 (P3) and I4
(P1).The pump rate at refineries should be kept
between 300 and 800 m3/h.  Products P1 and P2
are forbidden to touch together inside the
pipeline.

The flow rate ranges in pipeline segments are
given in Fig 6. The maximum and minimum vol-
umes transferred to each pipeline during each run
are 16000 and 500 m3, respectively. The same
upper and lower bounds are for min/max vol-
umes transferred from a pipeline to an active dis-
tribution center. Product inventory, pumping cost
at refineries and demand for next 10 days are
given in Table 4. The interface volume and cost
can be found in [23]. We also consider In0new={I5,
I6}, CB=200 $/m3 and CR=0 $/run.

Fig. 6.Pipeline structure of Example 2
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We start with 

to solve Example 2. Table 5 shows the compu-
tational results for Example 2. From this table,
the SIM model needs 13 pumping runs to find
the optimal detailed schedule in 10393s. NSIM
faces 31.98% backordered demands and returns
a poor solution of $7702200 up to the maximum
computational time of 18000 CPUs. 

The best detailed schedule for Example 2 with

13 pumping runs for the SIM model is given in
Table 6. From this table, 36 product deliveries are
accomplished at distribution depots through the
time interval [187.0-207.0]. For example, during
time interval [81.5-92.7] h, 4240 m3 of P3 and
5600 m3 of P1 are injected from refineries R1 and
R2, respectively. During this time interval, 2000
m3 of P3 are transferred to the branching line N1
to divert the same volume of P3 to depot D5.
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P
Inventory (10m3) Pump cost ($/m3) Initial inventory of depots (10m3)

R1 R2 R1 R2 D1 D2 D3 D4 D5 D6 D7

P1 3000 1500 8 6.5 1100 - 1520 - 700 580 100

P2 - - - - - - 960 - 240 - 400

P3 4200 - 8 - 870 750 780 240 600 200 200

P4 3800 - 7 - 400 - 800 440 - - -

Table 4: Inventory, pumping cost and demand of Example 2

N.R CPU(s) Cont. v Bin. v Eqs. Bd (%) P.c ($) I.c ($) z ($) Relax z ($) In.gap

SIM 12 7727 2877 820 7448 0 812000 55700 867700 831900 0.041

SIM 13 10393 3081 884 7972 0 809900 55700 865600 831900 0.038

SIM 14 10156 3285 948 8496 0 809900 55700 865600 831900 0.038

NSIM 7 706 1857 500 4835 42 553400 30200 9723600 831900 0.914

NSIM 8 3248 2061 564 5360 36.76 642700 35600 8678300 831900 0.904

NSIM 9 18000 2265 628 5885 31.98 712000 30200 7702200 831900 0.891

Table 5: Computational results of Example 2

Time Interval
[h]

output node Branchline Output nodes
R1 R2 N1 N2 N3 D1 D2 D3 D4 D5 D6 D7

0-10.5 450P1 - 240P1 - - 210P3 - - - 240P2 - -
10.5-45.5 1300P1 - 600P1 - - 700P1 - - - 600P3 - -
45.5-57.5 580P3 - - - - 400P1 - 180P2 - - - -
57.5-71.5 780P3 - 500P3 - - - 280P3 - - 500P1 - -
71.5-81.5 776.6P3 - 190P3 100P3 - 366.6P3 - 220P2 90P3 - - 100P1
81.5-92.7 424P3 560P1 200P3 - - 56P3 168P3 560P2 - 200P3 - -
92.7-112.6 799.3P3 940P1 400P3 400P3 200P1 97.33P3 302P3 740P1 - - 200P1 400P2
112.6-128.3 470P3 - 50P3 - - - - 420P1 50P3 - - -
128.3-134.3 320P4 - - - 180P3 140P3 - - - - 180P1 -
134.3-154.3 693.3P4 - 200P4 200P3 200P3 - - 29.33P1 - - 200P1 200P3
154.3-161.0 416.6P4 - 100P4 - 200P3 50P4 - 66.66P1 100P3 - 200P3 -
161.0-187.0 780P4 - - - - - - 780P3 - - -
187.0-207.0 1590P4 - 440P4 - - 350P4 - 800P4 440P4 - -

Table 6: Amount of products transferred to pipelines and depots of Example 2 (in 10 m3).
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CONCLUSIONS
In this paper, a mixed integer linear program-

ming model for the detailed scheduling of a tree-
like pipeline system with multiple branching
lines, refineries and depots has been presented. It
used a continuous time representation, in which
the pumping run duration and volume are deter-
mined by the optimization. The model considered
all the operational constraints, such as forbidden
sequences, mass balances, injection and distribu-
tion constraints and product demands. Compared
to previous works on multi-level tree like
pipelines, the proposed model has the ability of
considering interface volumes between products
and simultaneous delivery to distribution depots.
The problem aim was to meet product demand
during a fixed planning horizon at minimum op-
erational costs including pumping, interface and
on/off pump costs. To show the advantages of al-
lowing simultaneous deliveries to distribution de-
pots, two case studies have been solved using the
proposed formulation. In the first example, a tree-
like pipeline featuring a mainline, two refineries,
five depots and two branching lines was consid-
ered. The second example dealt with a large scale
case study in which a mainline with two refineries
and three branching lines should convey four
products to seven distribution depots over 10-day
scheduling horizon. Results illustrated that the si-
multaneous delivery mode permits to find the op-
timal solutions of pipeline system in lower CPU
times with regards to non-simultaneous mode.

Future work will involve extending the pro-
posed approach to more complex tree-like
pipeline systems in which refineries can be lo-
cated on branch points and branching lines.
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