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A New Approach for Solving Interval Quadratic
Programming Problem
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Abstract
This paper discusses an Interval Quadratic Programming (IQP)

problem, where the constraints coefficients and the right-hand sides
are represented by interval data. First, the focus is on a common
method for solving Interval Linear Programming problem. Then the
idea is extended to the IQP problem. Based on this method each IQP
problem is reduced to two classical Quadratic Programming (QP)
problems. Afterwards these classical problems are solved using the
SQP algorithm and the numerical results are presented.
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INTRODUCTION
QP is a special type of mathematical optimiza-

tion problem that has been applied to solve real
world problems (Jafari, 2010). Since, this subject
was studied by many researchers where some of
them are as follows. In 2014, Kochenberger et al.
studied the unconstrained binary quadratic pro-
gramming problem (Kochenberger, et al., 2014).
Frasch et al. in 2015 addressed the ubiquitous
case where the quadratic programming problems
are strictly convex and proposed a dual Newton
strategy that exploits the block-bandedness sim-
ilarly to an interior-point method (Frasch, Sager,
& Diehl, 2015). At this year, Gill and Wong stud-
ied active-set method for a generic quadratic pro-
gramming problem with both equality and
inequality constraints (Gill & Wong, 2015). In
2017, Takapoui et al. proposed a fast optimiza-
tion algorithm for approximately minimizing
convex quadratic functions over the intersection
of affine and separable constraints (Takapoui,
Moehle, Boyd, & Bemporad, 2017). 

In conventional quadratic programming model,
the parameters are known constant. However, in
the real world, ambiguity and vagueness are nat-
ural and ever-present, so the parameters are sel-
dom known exactly. Hence, we use interval
programming to model these ambiguities and un-
certainties in mathematical forms. Because inter-
val programming problems in comparison with
fuzzy programming problems and probabilistic
programming problems need less information.
Also none of the interior numbers of interval has
qualitative and insufficiency preference to other
ones. Hence, it is so applicable and effective to
use from interval programming in such situa-
tions. In interval linear programming problems
is of interests of many researchers. As instance
some of these studies are taken bellow. 

In 1994 Shaocheng (Shaocheng, 1994) studied
interval number linear programming problems
and proposed a new method based on the maxi-
mum value range and minimum value range.
Lodwick (Lodwick, 2011), studied explores the
interconnections between interval analysis, fuzzy
interval analysis, and interval, fuzzy, and possi-
bility optimization. Hladík (Haldik, 2014) pro-
posed a method for testing basis stability of
interval linear programming. Hladík (Haldik,
2017) in 2017, dealt with a linear programming

problem with interval data and discussed the
problem of checking whether a given solution is
optimal for each realization of interval data. Al-
lahdadi et al. (Allahdadi, Mishmast Nehi, Ashay-
erinasab, & Javanmard, 2016) considered the
interval linear programming problems, which are
used to deal with uncertainties resulting from the
range of admissible values in problem coeffi-
cients. Then, they proposed two new ILP meth-
ods and their sub-models to solve them. 

Again at this year Hlad´ık, introduced a novel
kind of robustness in linear programming and
proposed a method to check for robustness of a
given point. He also recommends how a suitable
candidate can be found and discussed topological
properties of the robust optimal solution set, too.
Ashayerinasab et al. (Ashayerinasab, Mishmast-
Nehi, & M., 2018) introduced a new algorithm
to solve an arbitrary characteristic model of the
interval linear programming model. Also, Mish-
mast et al. (Mishmast Nehi, Ashayerinasab, &
Allahdadi, 2018) reviewed some existing meth-
ods for solving interval linear programming
problems and introduced an improved method
and its sub-models in 2018.

Interval programming problems in comparison
with fuzzy programming problems and proba-
bilistic programming problems (Ebrahimnejad,
Ghomi & Mirhosseini-Alizamini, 2018; Taleshian
& Fathali, 2016; Taleshian, Fathali, & Taghi-
Nezhad, 2018; Nasseri, Taghi-Nezhad, &
Ebrahimnejad, 2017a; Nasseri, Taghi-Nezhad, &
Ebrahimnejad, 2017b; Khalili Goodarzi, Tagh-
inezhad, & Nasseri, 2014) need to much less in-
formation (Rezai Balf, Hosseinzadeh Lotfi, &
Alizadeh Afrouzi, 2010). Also none of the inte-
rior numbers of interval has qualitative and in-
sufficiency preference to other ones. Hence, it is
so applicable and effective to use from interval
programming in such situations.

In spite of the fact that interval linear program-
ming problem was noticed by many researchers
as an interesting subject, no much observable de-
velopment is happened in interval quadratic pro-
gramming problem. Hence in this paper we deal
with interval quadratic programming problem.

This paper is organized in 6 sections. In the
next section, quadratic programming problem is
defined. In Section 3 some necessary notations
and definitions of interval numbers and interval
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arithmetic are given. Section 4 with its three sub-
sections, defines an IQP problem for the quad-
ratic form and extends a pre-existing method
which was applied for the linear form (Shocheng,
1994). In Section 5, an example is presented to
illustrate how to apply the contribution of this
paper for solving the QP problem with interval
parameters. Finally, a conclusion is drawn and
some directions for future study is suggested in
Section 6.

QUADRATIC PROGRAMMING
QP problem is the problem of optimizing (min-

imizing or maximizing) a quadratic function of
several variables subject to linear constraints on
these variables and can be formulated as follows:

(1)

In many of engineering applications including
regression analysis, image and signal progress-
ing, parameter estimation, filter design, robust
control, and so on (Aboudolas, Papageorgiou,
Kouvelas, & Kosmatopoulos, 2010; Gupta,
1995; Hertoga, Roosa, & Terlakya, 1991; Zhou,
Cheng, & Li, 2012; Taghi-Nezhad & Taleshian,
2018), it is necessary to solve the quadratic pro-
gramming problem (1). The problem in vector-
matrix notation may be written as follows:

(2)

where x=(x1, x2, …, xn )T is the vector of deci-
sion variables which should be determined. The
others are the parameters given by problem:
c=(c1,c2,…,cn ) is the vector of cost coefficients,
Q=[qij]m×n is the matrix of quadratic form,
A=[aij]m×n is the matrix of constraint coefficients
and b=(b1,b2,…,bm)T is the vector of right-hand

side. Any QP over linear constraints can be put
in the above standard form. Without loss of gen-
erality, we assume that Q is symmetric and pos-
itive semi-definite. Thus, QP is solvable in
polynomial time (Kozlov et al., 1980). Although,
it is available to consider Q as an indefinite or
negative semi-definite matrix, in which case QP
is an NP-hard problem (Pardalos & Vavasis,
1991). As it mentioned before, QP models are
usually formulated to find some future courses
of action. Hence the parameter values used
would be on a prediction of future conditions
which inevitably involves some uncertainty. In
such cases the uncertainties can be modeled in
mathematical forms using interval numbers
(Ishizaki, et al., 2016; Lio & Wang, 2007; Wang
& Huang, 2013). In this paper, the programming
problems are dealt with where the parameters are
represented by interval data. Since the parame-
ters are interval valued, the objective value is in-
terval valued as well. 

THE BASIC INTERVAL ARITHMETIC
Some basic definitions and properties of inter-

val numbers and intervals arithmetic can be seen
in (Mohd, 2006).

Definition 1: An interval number is a closed in-
terval such as

A =̃[aL , aR ]={a: aL≤ a ≤ aR, a∈ℝ}

where aL and aR are left and right limit of inter-
val A  ̃on the real line ℝ respectively. If aL=aR,
then A =̃[a,a] is a real number.

Definition 2: Any interval number A  ̃ is alter-
natively represented as A =̃(m(A )̃,w(A )̃), where
m(A )̃ and w(A )̃ are called the mid-point and half-
width of interval A ,̃ and are defined as follows:

m(A )̃=1/2 (aL+aR ),  w(A )̃=1/2 (aR - aL ) (3)

Definition 3: Let [a,b] and [c,d] be two arbi-
trary interval numbers. Therefore, four arithmetic
operations [addition +, subtraction -, multiplica-
tion ×, and division /] on interval numbers are de-
fined as follows:

[a,b]+[c,d]=[a+c,b+d]                              (4)
[a,b]-[c,d]=[a-d,b-c]                                  (5)

[a,b]×[c,d]=[min{ac, ad, bc, bd},max{ac, ad,
bc, bd}] (6)
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[a,b]/[c,d]=
[a,b]×[1/d,1/c][min{a/c,a/d,b/c,b/d},

max{a/c,a/d,b/c,b/d}],   0∈[c,d] (7)

Arithmetic operations on interval numbers sat-
isfy useful properties. To give an overview of
them, let A =̃[aL , aR ], B =̃[bL,bR ], C =̃[cL,cR ],
0=[0,0] and 1=[1,1]. Using these symbols, the
properties are formulated as follows [2]:

1. A +̃B =̃B +̃A ̃
A ×̃B =̃B ×̃A ,̃ (commutativity)

2. (A +̃B )̃+C =̃A +̃(B +̃C )̃
(A ×̃B  ̃)×C =̃A ×̃(B ×̃C )̃, (associativity)

3. A =̃A +̃0=0+A ̃
A =̃A ×̃1=1×A ,̃ (identity)

4. A ×̃(B +̃C  ̃)⊆A ×̃B +̃A ×̃C ,̃ (subdistributiv-
ity)

5. If b×c≥0, for any b∈B  ̃and c∈C ,̃ then A ×̃
(B +̃C )̃=A ×̃B +̃A ×̃C .̃ 

Furthermore, if A ̃=[a,a], then A ̃× (B ̃+
C )̃=a×B +̃a×C ,̃ (distributivity)

6. 0∈A -̃A  ̃and 1∈A /̃A  ̃.
7. If B ⊆̃E and C ⊆̃F, then

B +̃C ⊆̃E+F,
B -̃C ⊆̃E-F,
B ⋅̃C ⊆̃E⋅F,
B /̃C ⊆̃E/F, (inclusion monotonicity).

INTERVAL QUADRATIC PROGRAMMING
Here, we first define IQP models and then pro-

pose a novel method for solving the mentioned
problem.

Definition of IQP model 
If the parameters cannot be exactly known con-

stant and presented by interval data the QP prob-
lem transforms to the IQP problem and in general
form can be written as follows:

(8)

But, in this paper the solution of the following
IQP is dealt with:

(9)

in which the constraints coefficient and the el-
ements of right-hand side vector, are all interval
numbers.

The solution of interval quadratic programming
According to the operations of the interval

number, each inequality in (9) can be trans-
formed into 2n+1 inequality as follows:

a1 x1+a2 x2+⋯+an xn≥b,  aj∈[ajl,aju], b∈[bl,bu].

Let Di stand for the set of solutions to the i-th
inequality and:

Definition 5: Suppose 

The inequality                          is called the char

acteristic formula of 

where                                              

Definition 6: For each constraint inequality 

if there exists one char-
acteristic formula                        such that its set
of solution is the same as D  ̅or Ḏ, then this char-
acteristic formula is called as maximum value
range inequality or minimum value range in-
equality.

By the theory of HyPlane, it is easy to obtain
the following theorem.

Theorem1: Suppose 

Then                                                       are  max-
imum value range inequality and minimum range
inequality for this constraint condition, respec-
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tively.
Proof: For proving that the term 
is the maximum value range of inequality 

it must be shown 
that D  ̅is the solution set of characteristic for-
mula.

Consider the following characteristic formula 
for 

(10)

where a_j∈[ajl,aju ] and b∈[bl,bu ].
Now it can be written as: 

(11)

Considering (10) and (11) and also the fact that
bl≤b yields:

Consequently, each solution of characteristic
formula                      satisfies                       

Therefore,                  is the maximum value
range.

Similarly, for proving that the term                        

is the minimum value range of inequality 

it must be shown that Ḏ is
the solution set of characteristic formula.

(12)

Since                    the relation (12) and b≤bl

yield:

Consequently, each solution of 
satisfies characteristic formula                        Thus  

is the minimum value range. So the
proof is completed.

According to this theorem for each constraint
condition in interval number of QP (9), there is
maximum value range inequality 

and minimum value range inequality

Then the interval number of QP (9) is reduced
to the two following classical QP problems:

(13)

(14)

Suppose the optimal solutions to (13) and (14)
are x'=(x1',x2',…,xn' ) and x''=(x1'',x2'',…,xn'' ) with
the values of Z' and Z'', respectively. It is easy to
prove the optimal value of (9) belongs to the in-
terval [Z',Z'' ], but the prove is omitted here.

However, since all numbers involved in model
(13) and (14), are real numbers, these models are
classical QP problems which can be solved using
SQP algorithm in MATLABTM toolbox. The
SQP algorithm is used as an optimization method
to minimize the nonlinear constrained optimiza-
tion problem. This method is described in the
next subsection.

The SQP algorithm
SQP is an iterative analytical nonlinear pro-

gramming method. This technique begins from
an initial point to find a solution using the gradi-
ent based information. This optimization method
is found faster than other population based search
algorithms. Although the SQP method is highly
dependent on the initial estimate of the solution
(Bayo, Grau, Ruiz, & Sua´rez, 2010), this has
successfully been applied in some optimal con-
trol problems. The SQP method is based on an it-
erative formulation together with the solution of
some other QP sub-problems. An optimization
problem in the SQP method is considered as fol-
lows:

(15)

where J(x) is the cost function and ψi (x) stands
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for the constraint. In this regard, a Lagrangian
function L(x,λ) is constructed in terms of the La-
grangian multiplier λi. The cost function together
with the above constraint is defined as follows:

(16)

In fact, the SQP consists of three main parts:
1-Update the Hessian of the Lagrangian func-

tion according to:

(17)

2-Solve the QP sub-problem:

(18)

3-A linear search to find a solution for the next
iteration:

Xk+1=Xk+αdk (19)

The algorithm is repeated until a stopping cri-
terion (either maximum number of iterations or
convergence criterion) is met. It must be men-
tioned that the SQP algorithm is a gradient based
algorithm. Generally gradient based methods
have the possibility of getting trapped at local op-
timum depending on the initial guess of the so-
lution. In order to achieve a good final result,
these methods require very good initial guesses
of the solution. Since the matrix Q is supposed
to be symmetric (qij=qji ) and positive semi-def-
inite, the objective function is convex and thus
the SQP algorithm yields the global optimum so-
lution. The corresponding theorem is presented
as follows (Bazaraa, Sherali, & Shetty, 1993):

Theorem 2: In mathematical terminology,
f(x1,x2,…,xn ) is convex if and only if its n×n Hes-
sian matrix is positive semi-definite for all pos-
sible values of (x1,x2,…,xn ). That is for any x≥0
the following relation is satisfied:

(20)

in which

is the Hessian matrix of function f. Hence the
relation (20) can be rewritten as follows:

(21)

AN EXAMPLE
In this section, an example is presented to ver-

ify the performance of the proposed method.
Consider a river from which diversions are made
to three water–consuming firms that belong to
the same corporation, as illustrated in Figure 1.
Each firm makes a product, and is the critical re-
source. Water is needed in the process of making
that product, and it is critical resource. The three
firms can be denoted by the index j=1,2,3 and
their water allocations by x_j. Assume the prob-
lem is to determine the allocations xj of water to
each of three firms (j=1,2,3) that maximize the
total net benefits, obtained from all
three firms. The total amount of water available
is constrained or limited to a quantity of Q. As-
sume the net benefits NBj (xj), derived from water
xj allocated to each firm j, are defined by:

NB1 (x1 )=3x1-x12 (22)
NB2 (x2 )=x2-x22 (23)
NB3 (x3 )=x3-x32 (24)

The problem is to find the allocations of water
to each firm that maximize the total benefits
TB(X):

TB(X)=(3x1-x12 )+(x2-x22 )+(x3-x32 )           (25)
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These allocations cannot exceed the amount of
water available, Q, less any that must remain in
the river, R. Assuming the available flow for al-
locations, Q-R, is 3. The crisp optimization prob-
lem is to maximize Equation (25) subject to the
resource constraint:

x1+x2+x3 ≤ 3 (26)
Thus the problem is:
MaxTB(X)=(3x1-x12 )+(x2-x22 )+(x3-x32 )

s.t.  � (27)

x1+x2+x3≤[1.5,4.5]
x1, x2,x3≥0 

-x1-x2-x3 ≥ [-4,5,-1,5]
x1, x2,x3≥0

Fig.1

Now, assume that the available flow for alloca-
tions, Q-R, is not certainly known and is repre-
sented by an interval [1,5, 4,5]. Thus the problem
turns to the IQP problem as follows:

Max TB(X)=(3x1-x12 )+(x2-x22 )+(x3-x32)

s.t.  � (28)

That is equivalent to the following problem:
-Min TB(X)=-(3x1-x12 )-(x2-x22 )-(x3-x32 )

s.t.  � (29)

Clearly this problem is in the form of model
(9). Hence it can be solved using the proposed
method. Since the parameter b_1, is interval
number, the objective value of the problem
should be interval number as well. According to
Theorem 1, the minimum value range and maxi-
mum value range of interval solution obtained by
solving two following programs respectively:

Z'=-Min  TB(X)=-(3x1-x12 )-(x2-x22 )-(x3-x32 )

s.t.  �
Z''=-Min  TB(X)=-(3x1-x12 )-(x2-x22 )-(x3-x32 )

s.t.  �

Where parameter values are all known con-
stant. Thus, these models are conventional QP
problems. By solving these problems using SQP
algorithm the global optimum solutions are ob-
tained as:

x'=(1,17,0,17,0,17),  x''=(1,5,0,5,0,5)

The values of the minimum range and maxi-
mum range of the interval that objective value
belongs to, are also achieved Z'=2.42 and
Z''=2.75 respectively. Thus optimum value of
IQP model (22) belongs to the interval
[2.42,2,75].

CONCLUSION
Interval programming problems in comparison

with fuzzy programming problems and proba-
bilistic programming problems need to much less
information. Also none of the interior numbers
of interval has qualitative and insufficiency pref-
erence to other ones. Hence, it is so applicable
and effective to use from interval programming
in such situations. In spite of the fact that interval
linear programming problem was noticed by
many researchers as an interesting subject, no
much observable development is happened in in-
terval quadratic programming problem. Hence in
this paper we deal with interval quadratic pro-

-x1-x2-x3≥-1.5
x1, x2,x3≥0 

-x1-x2-x3≥-4.5
x1, x2,x3≥0

x1+x2+x3≤3
x1, x2,x3≥0 



Iranian Journal of Optimization, 11(1): 67-75, 201974

gramming problem. This paper generalizes the
conventional quadratic programming of constant
parameters to interval parameters and the optimal
interval value of the objective produced from the
interval parameters, including constraint coeffi-
cients and right-hand sides. The idea is to reduce
the interval quadratic programming problem to
the two classical quadratic programming prob-
lems that yields the maximum range value and
minimum range value of optimal interval value
respectively. The numerical examination has
been showed that the proposed method is so
practical. We also emphasize that based on the
proposed idea for solving this typical model, we
may focus on sensitivity analysis on the param-
eters of the corresponding models. We are trying
to extend this method to situations where param-
eters are trapezoidal or LR fuzzy numbers. Also
we hope to extend our presented method for
problems with fuzzy parameters and fuzzy vari-
ables to present better and comparative re-
searches. 
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