
Iranian Journal of Optimization, 8(1): 17-27, 2016

Optimal Scheduled Unit Commitment Considering Wind
Uncertainty Using Cuckoo Search Algorithm

1 Department of Electrical Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
2 Department of Electrical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

Abstract
In this paper, a new method to review the role of wind units as an

energy-producer in the scheduling problem of unit commitment is pre-
sented. Today, renewable energy sources due to lack of environmental
pollution, and consequently a very low marginal cost, have been re-
ceiving considerable attention in power system. But these sources are
associated with uncertainty, solving unit commitment problem as a
traditional power program system optimization that attempts to de-
termine optimal entry and exit units and optimal production per unit
minimizes the total cost of production. Then, in this study using an
iterative algorithm randomly with allocation of density functions fits
the wind speed, Uncertainty of production wind units has been mod-
iled in the unit commitment program. Analysis of UC with wind
power is performed in order to minimize total system cost. In this
paper to achieve the optimum solution, a meta-heuristic Cuckoo
search (CS) algorithm with high convergence speed is used to solve
the unit commitment problem considering IEEE standard 10 unit test
system. The simulations results show the effeciveness of the proposed
method for reducing production costs and improving load profiles.
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INTRODUCTION
Numerous problems resulting from the use of

fossil fuels such as green-house gas (GHG) emis-
sions and other air pollutants such as CO2 emis-
sions have compelled human beings to search for
a suitable replacement. Renewable energy
sources are a key solution to reduce dependency
on fossil fuels. Because of the many benefits in-
cluding significant reduction in operating costs,
low depreciation, long life time and ability to
provide power for a wide range of applications,
it is more preferable to use them in energy sec-
tions. Among the renewable sources which can
be categorized as solar energy wind and geother-
mal,wind power due to uninterrupted nature, fast
progress and availability of technology has made
a major impact on power systems. This source of
energy can be utilized as a wind turbine or in
large scale as a wind farm (Yousefi et al., 2013).
Today, in most parts of the world including Por-
tugal, Spain, Denmark, Germany and Ireland, the
widespread use of wind energy has become a
common occurrence (Beurskens et al., 2010).
Various studies have been conducted on effect of
wind energy on power system.In (Solymani et
al., 2015), a method for modeling wind power
plant in power systems reliability evaluation is
proposed. In another work a review of the current
methods and advances in wind power forecasting
and prediction is accomplished. First, numerical
wind prediction methods from global to local
scales, ensemble forecasting, up scaling and
downscaling processes are discussed (Foley et
al., 2012). On the other hand, economic distribu-
tion of daily load requires efficient management.
The use of wind turbines prevents unit commit-
ment (UC) with high costs and therefore leads to
system efficiency, reliability and cost reduction.
The unit commitment has an important role in
economic operation of power systems. Determin-
ing the proper time for log in or exiting the plants
of circuit between the possible modes will lead
to huge savings. Traditionally, unit commitment
deals with generation units schedule in a power
system. The purpose of such schedule is to min-
imize operating costs while constraints including,
load balance, spinning reserve of system and
minimum up/down time limits, in a set of time
periods are met. Solving UC problem has been
done with classic and intelligent algorithms.

Classic algorithms such as priority list Algorithm
(Kerr et al., 1966), Lagrange planning (li et al.,
2005), dynamic planning (Wood et al., 1996) and
planning based on linear mixed integer pointed
(Camon et al., 2006), Smart algorithms including
fuzzy logic, Neural networks, genetic algorithms
(Swarup et al., 2002), Leap Frog algorithm
(Ebrahimi et al., 2011) and the particle swarm al-
gorithm (Jeong et al., 2010) had been used in
studies.In (Pozo et al., 2013) a new approach for
the joint energy and reserves scheduling and unit
commitment with n-k reliability constraints for
the day-ahead market is presented. In (Chan-
drasekaram et al., 2012) a binary/real coded arti-
ficial bee colony (BRABC) algorithm to solve
the thermal unit commitment problem (UCP) is
implemented. A novel binary coded ABC with
repair strategies is used to obtain a feasible com-
mitment schedule for each generating unit, satis-
fying spinning reserve and minimum up/down
time constraints. In (Moghimi et al., 2012) a new
approach via a new evolutionary algorithm
known as imperialistic competition algorithm
(ICA) to solve the unit commitment problem is
employed. In (Mohammadi et al., 201) a unit
commitment formulation for micro-grid is pre-
sented that includes a significant number of grid
parallel proton Exchange Membrane-Fuel Cell
Power Plants (PEM-FCPPs) with ramping rate
and minimum up/down time constraints.
In order to minimize the operation and fuel cost,
renewable sources are implemented in the com-
bined Unit Commitment and Emission (CUCE)
model considering wind energy and carbon tax
which are addressed in (Zhang et al., 2015). The
combined wind and thermal generation schedul-
ing problem for operating an isolated hybrid
power system reliably and efficiently is discussed
in (Chen, 2088). In (Jose et al., 2011) a new unit
commitment (UC) formulation for a power sys-
tem with significant levels of wind generation are
proposed. All of these researches show that un-
certainty of wind power output has a substantial
impact on unit commitment. 

Recently, to ensure high utilization of wind
power, a chance constrained optimization model
(Wang et al., 2012) and a robust optimization
model (Jiang et al., 2012) have been developed
to solve the problem. In (Zhao et al., 2013), a ro-
bust optimization approach for unit commitment
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is developed to maximize social welfare under
worst-case wind power output. In another paper
new requirements that integrate large amounts of
variable and partly uncertain wind power produc-
tion that could be brought to UC and power sys-
tem operations are reviewed (Kiviluoma et al.,
2011). A complex cost model for static TNEP
problem with the integration of wind power un-
certainty and PEVs along with an incentive based
DR program is demonstrated in (Rathore et al.,
2016). 

This paper presents impact of wind power gen-
erator as an energy production unit on unit com-
mitment. For UC problem a new method based
on cuckoo optimization algorithm is suggested.
In (Enayati et al., 2015), a novel procedure to
find the firing angles of the multilevel inverters
of supply voltage and, consequently, to decline
the total harmonic distortion (THD), by cuckoo
optimization algorithm has been presented .As
mentioned above, the power output of wind units
depends on the wind speed and is variable based
on weather conditions. As a result, the simulation
for uncertainty has been done by using random-
ized Monte Carlo algorithm.The remainder of
this paper is organized as follows. In Section 2,
mathematical problem formulation of UC-WP
problem is defined. Monte Carlo method is de-
scribed in section 3. The proposed COA algo-
rithm is discussed in Section 4. Section 5 shows
the simulation and results and finally conclusions
are stated in Section 6.

Mathematical problem formulation of unit
commitment and wind power
(UC-WP)
Objective function

The objective function consists of minimizing
the sum of fuel cost, the startup and shut down
cost of all individual units, while the term wind
energy cost has also been taken into account in
this manuscript for the given period of time sub-
jected to various constraints.

(1)
Where

(2)
FCi is the fuel cost of the ith unit; ai, βi, γi, are

the fuel cost coefficients of the ith unit; N is the
number of generating units; th is the total number
of hours; Pi,t is the output power of ith unit at
hour th, Ui,t is the on/off status of unit ith at hour
th; SUCi and SDCi are respectively the startup
and shutdown cost of the ith generating unit.

The shut-down costs have not been taken into
consideration in accordance with the other ap-
proaches in the literature (Talezadeh et al., 2014).
The start-up cost is related to either hot or cold
conditions, where it can be written as Eq (3).

(3)

HSCi, CSCi are the hot startup cost and cold
start -up cost of the ith unit; is the continuous
off time duration of the ith unit; Tdowni is the min-
imum down time of the ith unit; Tcoldi is the cold
start hours of the ith unit. 

Cwind,j Shows operation cost of wind units (Het-
zar et al., 2008) and is defined in the form of
equation (4):

Cwind,j =dj×Pwind,j (4)                                                               

Where dj is the operation cost per MW power
generation and Pwind,j the jth output power of wind
units at hour th.

Constraints of UC-WP
A. System power balance: The total power

generation from thermal units, wind power at hour
th must be equal to the load demand for that hour.

(5)

B. System spinning reserve requirements:
Appropriate spinning reserve is required for sta-
ble and reliable operation.

(6)             
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Where SRt is the maximum reserve at the th
hour and PDt power demand at the th hour.

C. Minimum up and down time: When the
unit i is started up or started down, it should not
be shut down/shut up before a minimum up-
time/down time (MUTi / MDTi) duration is met.

(7)

D. Unit generation limits: For stable opera-
tion, Power generation of each generating unit
must be within its maximum and minimum
power range.

(8)

E. Constraints related to minimum and
maximum power produced by wind units
(Talezadeh et al., 2014):

(9)

Model of Wind energy                                                                                                                   
Wind power is a form of energy produced by

wind turbines. The existence of output power
is directly proportional to the availability of
wind. Thus, wind speed forecasting is neces-
sary in the process of wind power prediction.
Several studies have been done to find methods
for forecasting purposes (Emst et al., 2007;
Sideratos et al., 2007; Taylor et al., 2009). The
wind power generation output can be consid-
ered as a function of wind velocity. The formu-
lation in (10) is used in this paper which
demonstrates the relationship between the out-
put power and wind speed (v).

(10)

Where Pr is the rated power; vc is the cut-in
wind speed; vr is the rated wind speed; and vf is
the cut-off wind speed.

Mont carlo simulation stochastic model
The main core of stochastic simulation by

using Monte Carlo method is based on continu-
ous use of random numbers. Tendency to use the
Monte Carlo method results in more time to cal-
culate the exact answer with the help of definitive
algorithms that are impossible or time- consum-
ing (Liu et al., 2011). Generally Monte Carlo
method is implemented in two steps:

1. A deterministic optimization by using ex-
pected amounts of the uncertain variables will be
achieved to obtain base state system performance.   

2. Distribution uncertainly parameters will be
modeled   repeatedly and the impact of uncer-
tainty will be seen.

Random vector ξ which has been q-dimen-
sional represents the uncertainty in wind power
generated and as a function of the normal distri-
bution is given by the following equation (Zhang
et al., 2010):

(11) 

Where μ and  are the mean vector and covari-
ance matrix of the random variables defined by
Equation (12-13):

µ=[µ1, µ2,…, µq]T (12)                       

(13)

σi is the standard deviation of each individual
random variable and rij∈(-1,1) the correlation co-
efficient between i and  j.

(14)

Where LLT= and can be gained by Cholesky
factorization.

Cuckoo optimization algorithm
Cuckoo Search Algorithm is an optimization

algorithm based on behavior of the Cuckoo bird.
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The algorithm was introduced by Rajabioun at
2011. Cuckoo bird parasitic behavior on repro-
ductive strategy is employed as a basic idea of
the use of this algorithm. These birds lay their
eggs in the nests of other birds that have been
layed recently. During the time that the host bird
takes care of the eggs it believes that the eggs are
its own. If the host bird recognizes the eggs as
not being its own, the alien eggs may be thrown
out or the nest abandoned. Each egg in a nest rep-
resents a solution, and a cuckoo egg represents a
new solution. So, to start the optimization algo-
rithm, this algorithm begins with an initial pop-
ulation of cuckoos in the form of arrays. Each
one of the arrays is called a habitat (Rajabioun,
2011). This array is defined as follows:

habitate=[y1, y2, …, yN]      (15)                                                                                 

The profit of a habitat is obtained by evaluation
of profit function F as:

profit = F (habitat) (16)        

Cuckoo birds abandon their eggs at maximum
distance from their habitat, which is called egg
laying radius (ELR). In an optimization problem
for variables with upper limit (varhi) and lower
limit (varlow), ELR is calculated by the following
equation:

ELR=α×varhi-varlow)×(Number of current cuckoo’s
eggs)/(Total number of eggs)                             (17)                                                                       

α = an integer number which handles maxi-
mum value of ERL.

When the cuckoo broods grow and mature, they
will live for a while in a community. But when
the egg laying season comes they immigrate in
order to find a suitable habitat that will provide a
higher chance of survival. After the cuckoo
groups are formed in various regions, the popu-
lation of the best value and efficiency will be cho-
sen as goal point for immigration. Cuckoo during
migration, does not move all the way to the goal
point. They go through only λ percent of the entire
way and in this way possess deviation with φ
value.where "λ"  is a random number between [0,
1] and also φ generally has between -π/6   and  π/6.
These two parameters will help cuckoos search
more areas to find a more suitable location. When
all of the cuckoos moved to the target point, some
eggs will be assigned to each of them. The transi-
tion egg process will be carried out again. Cuckoo
migration algorithm formula is as follows:
XNextHabitate=XCurrentHabitate+F(XGoalpoint-XCurrentHabitate)

(18)                                       

A. Cuckoo Search Algorithm (CSA) Imple-
mentation

The algorithm for the improved unit commit-

Fig.1. Flowchart of proposed method
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ment problem is shown in Fig. 1. The aim is to
find the best state of ON or OFF plants in order
to achieve minimum cost.

Simulation results and discussion
A standard IEEE 10-unit system is considered

for simulation study (Govardhan et al., 2015).
Wind power plant with capacity of 30 MW is in-
tended as a unit addition to the existing units.
Profile related to power system units is compiled
in Table 1. This information includes the mini-
mum and maximum generation power, fuel cost
function coefficients, minimum up and down
time, hot start-up and cold start-up cost, and also
information on time up and down units before
start schedule. Spinning reserve is considered to
be ten percent of the hourly load demand 24 hour
period. Fig. 2 shows daily load curve system. In
this study, three scenarios have been investigated
(Table 2). 

The first scenario is composed of usual unit
commitment problems using the algorithm
Cuckoo, while in the second step, the integration

of wind power generators to unit commitment
problem. The influence of uncertain wind power
has been studied.

Scenario 1: The generation dispatch of UC
without wind power is shown in Table 3. As can
be observed, according to the network require-
ment, units 1 and 2 as a mother plant are present
in the network for 24 hours. Affordable units U1,
U3 and U4 always generate maximum power.
Additionally, units U7, U9 and U10 which are
more expensive, produce power with their mini-
mum capacity to spinning reserve equipment.
Then total cost in this scenario is $56640.644

Scenario 2: Wind power generation and related
costs regardless of uncertain wind power is con-
sidered in this case. This article assumes a wind
plant of 30 MW according to (Jagar et al., 1996).
The existence of output power is directly propor-
tional to the availability of wind. Thus, wind
speed forecasting is necessary in the process of
wind power prediction. In this paper a multilayer
perceptron (MLP) which is a feed forward artifi-
cial neural network is used to forecast the wind

Fig.2. Load demand curve for 24 hour

Fig. 3. Amount of forecasted and actual wind speed
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speed according to wind speed and weather con-
ditions data in last ten years (Jagar et al., 1996).
Generally in neural networks, there are three
types of neuronal layers: the input layer, hidden
layer and output layer. Input layer include aver-
age peak wind speed, average deviation of wind
speed and average turbulence intensity, the out-
put layer consists of wind speed in the desired
day and average turbulence intensity. The wind

speed parameters are: VC=3 m⁄s , Vr=12 m⁄s,
Vf=30 m⁄s and the rated output power of wind
system is 30MW.

The amount of wind speed in study day is
shown in Fig.3. After finding the wind speed the
output power of the wind turbines which is shown
in Fig.4, is obtained from equation (10). Hence,
considered values for simulation analysis are d =
1.10 for per hour scheduling (Hetzar et al., 2008).

Parameters Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit1

Pmax (MW)
Pmin (MW)
a ($ ⁄h)
b ($ ⁄h)
c ($ ⁄h)
MUT(h)
MDT(h)
Hstart up ($)
Cstart up($)
Tcold (h)
To (h)

455
150

0.00048
16.19
1000

8
8

4500
9000

5
8

455
150

0.00031
17.26
970
8
8

5000
10000

5
8

455
150

0.00031
17.26
970
8
8

5000
10000

5
8

130
20

0.00211
16.5
680
5
5

560
1120

4
-5

162
25

0.00398
19.7
450
6
6

900
1800

4
-6

80
20

0.007
22.26
370
3
3

170
340
2
-3

85
25

0.00079
27.74
480
3
3

260
520
2
-3

55
10

0.004
25.92
660
1
1
30
60
0
-1

55
10

0.00222
27.27
665
1
1
30
60
0
-1

55
10

0.002
27.29
670
1
1
30
60
0
-1

Table 1: Characteristics of 10 generation units

Scenarios                                  Scenario Description

1 
2
3

UC without wind  power
UC with wind power

UC with uncertain wind power

Table 2: Different scenario for simulation

Fig.4. wind output power in 24 hour

Fig.5. Load demand variation without and with WP
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In this scenario, the total cost is $551336.44
and the associated generation scheduled is given
in Table 4. As can be seen from Table 4, cost of
power produced by wind plants is much lower
than power generation by thermal units. So total
cost dropped the amount $12422.17 compared to
scenario 1. Hourly load demand variation for this
scenario is shown in Fig. 5.

Scenario 3: In this section, uncertainty in the
production capacity wind plant is considered in
unit commitment problem using Monte Carlo
method. For this purpose the system uncertainty
and extracted probability density function must

be identified according to their non-deterministic
behavior. The next step is to produce a sufficient
number of random points for each of the uncer-
tain variables. Then in an iterative process using
Monte Carlo method, simulations have been in-
vestigated in the system. In this study, Monte
Carlo simulation with 1000 iterations is done for
modeling uncertainty of wind power.  In each it-
eration is produced a random vector according to
multivariate normal distribution function. So
using the mean value of wind power and also the
correlation coefficient between different hours
generates 1000 random signals with normal dis-

Time Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 SUC Cost($)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455

245
295
370
455
390
360
410
455
455
455
455
455
455
455
455
310
260
360
455
455
455
455
425
345

0
0
0
0
0

130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
0
0

0
0
0
0

130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
0
0
0

0
0
25
40
25
25
25
30
85
162
162
162
162
85
30
25
25
25
30
162
85
35
20
0

0
0
0
0
0
0
0
0
20
33
73
80
33
20
0
0
0
0
0
33
20
0
0
0

0
0
0
0
0
0
0
0
25
25
25
25
25
25
0
0
0
0
0
25
25
25
0
0

0
0
0
0
0
0
0
0
0
10
10
43
10
0
0
0
0
0
0
10
0
0
0
0

0
0
0
0
0
0
0
0
0
0
10
10
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0

0
0

900
0

560
1100

0
0

860
60
60
60
0
0
0
0
0
0
0

490
0
0
0
0

13683.12
14554.5
17709.45
18597.68
20580.02
23487.04
23261.99
24150.32
28111.07
30117.54
31976.07
33950.15
30057.54
27251.07
24150.32
21513.64
20641.83

22387
24147.34
30547.54
27251.07
22559.52
17645.36
15427.43

Total Cost (fuel cost + start-up cost)= 563758.61 $

Table 3: Optimal scheduling and dispatch of generation for scenario1

Fig. 6. Normal estimated distribution of
wind power

Fig7. The power output of wind plants in
different case under consideration the

uncertainty
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tribution. After the probability density function
related to wind power is produced, initial popu-
lation is determined and then each of the signals
is used in programming optimizing cuckoo algo-
rithm and the amount of costs relating to these
populations and   status of on or off units will be
stored. 

Then, based on the number of iterations the
wind power normal distribution curve is gener-
ated, and the average case, worst and best cases
of performance system are obtained.

The normal distribution estimated for 24 hours
of wind power data is shown in Fig. 6. The wind
power due to the existence of uncertainty com-
pared to expected value is different. Then,
amount of wind power that leads to the best,
worst and average value Cost is shown in Fig. 7,
and cost results are tabulated in Table5. As can
be seen, considering the uncertainty in wind

power production, Cost in the best case has a
minimum amount of $550538.98, in the worst
case the cost reaches a value of $553688.43, and
in mean case, the amount of expected Cost is
$552844.44.

In this scenario the total cost in comparison
with scenario 2   at best case 0.05% decrease, at
mean case 0.345% increase and in worst case
0.527 %    increased.

CONCLUSION
In this paper economic analysis with wind

power generator on unit commitment has been
considered. Wind power is a form of energy pro-
duced by wind turbines. Since the wind speed
forecasting is necessary to estimate amount of
power generation, in this work the order to esti-
mate wind speed has used a multi-layer neural
network algorithms release (MLP). The proposed

Time Unit
1

Unit
2

Unit
3

Unit 
4

Unit 
5

Unit 
6

Unit 
7

Unit 
8

Unit 
9

Unit 
10

SUC PW(
MW)

Cost($)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455
455

220.5
280
340
440
360
337

391.03
430
455
455
455
455
455
455

436.1
294.9
254.3
351.1
455
455
455
455
407

336.8

0
0
0
0

130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
0
0

0
0
0
0
0

130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
0
0
0

0
0
25
25
25
25
25
25
55
145
162
162
162
70
25
25
25
25
25
162
75

29.19
25
0

0
0
0
0
0
0
0
0
20
20
43
80
38
20
0
0
0
0
0
25
20
20
0
0

0
0
0
0
0
0
0
0
25
25
25
25
0
0
0
0
0
0
0
25
25
0
0
0

0
0
0
0
0
0
0
0
0
10
10
13
0
10
0
0
0
0
0
10
0
0
0
0

0
0
0
0
0
0
0
0
0
0
10
10
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0

560
0
0
0
0
0
0

290
170
30
30
0
0
0
0
0
0
0

200
0

260
0
0
0

24.50
14.46

30
30
30

22.93
18.97

30
30
30
30
30
30
30

23.88
15.06
5.69
8.85

0
8

9.89
10.81

13
8.14

13843.65
14318.2
16317.98
18068.18
19559.38
22911.50
22950.74
23935.38
26846.32
29470.6
31286.32
33113.14
28110.7
26724.9
23745.94
21267.44
20548.92
22242.11
24350.41
29884.97
27318.57
22103.39
17471.28
15294.15

Total Cost (fuel cost + start-up cost + wind power generation cost) =   550784.176$ 

Table 4: Optimal scheduling and dispatch of generation for scenario2

Scenario      Best Case ($)   Worst case ($)      Average case($)

Scenario 3     550508.98      553688.43              552844.44

Table 5: Results related to costs in scenario 3
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model has been successfully tested on an IEEE
standard 10 unit test system. Therefor efficient
Cuckoo search algorithm is executed to attain the
optimum solution. The results show that with the
use of wind plants, production requirements
more than the whole schedule time horizon is sig-
nificantly reduce, leading to decrease in the total
cost of the system. Also, load demand curve im-
proves by a considerable amount.  Finally, by in-
vestigating uncertainty of wind energy with
Monte Carlo method it is found that higher than
penetration wind generation in the network will
be more effective in reducing total cost of the
system.
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