

Journal of Medicinal Herbs

journal homepage: www.jhd.iaushk.ac.ir

Ethno-medicinal practices in the treatment of diabetic foot ulcers in Kano state, north-western Nigeria

<u>Sakina Buhari Sani</u>^{*1}, Bala Sidi Aliyu², Muhammad Hayatu², Musa Aliyu³, Abdullahi Balarabe Nazifi³, Yusuf Nuhu²

¹Department of Biology, Kano University of Science and Technology, Wudil, Kano, Nigeria; *Email: <u>sakinasanibuhari@yahoo.com</u>

²Department of Plant Biology, Bayero University, Kano, Nigeria; ³Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria;

ARTICLE INFO

Type: Original Research *Topic:* Medicinal Plants *Received* February 20th2021 *Accepted* June 23th2021

Key words:

- ✓ Diabetic foot ulcer
- ✓ Ethno-medicine
- ✓ Herbalists
- ✓ Medicinal plants
- ✓ Kano state

ABSTRACT

Background & Aim: Diabetic foot ulceration is a severe complication of diabetes mellitus that results in considerable ill health, financial burden and mortality. Many people in Nigeria utilize medicinal plants to treat diabetic foot ulcer and related complications, nonetheless, the utilization of such plants has not been acknowledged. This study was done to validate and document the medicinal plants used in the remedy of diabetic foot ulcer in Kano State, Nigeria.

Experimental: The target group of the study were herbalists and diabetic foot ulcer patients. The ethnobotanical information was obtained from willing respondents through an oral interview and a semi-structured questionnaire.

Results: A total of 300 respondents were consulted in this study, and they exposed the utilization of 36 medicinal plants against diabetic foot ulcer. The frequently used plant families were Fabaceae and Rhamnaceae. Stem bark and leaves were the commonly reported plant parts used. The methods of preparation are usually by decoction or pounding the plant parts into powder; and the preparations are administered via topical (51%), oral (27%) and topical/oral (19%) routes. Moringa oleifera, Anisopus manni and Cadaba farinosa were the first three frequently cited species, while *Ficus glumosa, Anogeissus leiocarpus, Guiera senegalensis* were among the most preferred medicinal plants. Approximately 92% have been reported to be pharmacologically active, while 36% have similar ethno-medical claims in certain regions of the world.

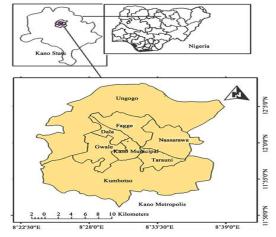
Recommended applications/industries: This study revealed the ethno-medicinal practices against diabetic foot ulcer in Kano State. Scientific validation of the efficacy and safety of these plants would assist towards development of better drugs and integrating some of the species into orthodox medicine.

1. Introduction

Diabetes mellitus (DM) is an assembly of metabolic disorders depicted by hyperglycaemia and a key reason of morbidity and mortality worldwide (Everett and Mathioudakis, 2018). According to the International Diabetes Federation (IDF), 19 million individuals aged between 20 and 79 years are diabetic, with approximately 3.7 million death from the disease in

2019, and about 2.7 million cases identified in Nigeria (IDF, 2019). The persistent hyperglycemia associated with unregulated DM causes widespread vascular damage targeting the kidneys, nerves, heart and eyes; thus making DM one of the global chief cause of cardiovascular disease, renal failure, lower limb amputation and blindness (Gezawa *et al.*, 2019; IDF, 2019).

Diabetic foot ulceration is a serious and life threatening complication of DM and accounts for significant ill health, mortality and healthcare expenses (Nongmaithem et al., 2016; Everett and Mathioudakis, 2018; Alosaimi et al., 2019). It is estimated that 25% of people living with DM are likely to be affected with foot ulcer in their lifetimes (IDF, 2019). Nigeria has the highest burden of DM in the sub-Saharan Africa and is reported to have 10% prevalence of diabetic foot ulceration (Gezawa et al., 2019), with a lower limb amputation rate of 35.4% (Ugwu et al., 2019). Diabetic patients with foot abscess are at high risk for major complications such as slow wound healing, infection and gangrene which may lead to amputation (Walsh et 2016; Everett and Mathioudakis, al., 2018). Furthermore, the cost of handling diabetic foot ulcers is enormous; studies have shown that it accounts for onethird of diabetes-associated expenses, thus making it one of the expensive diabetes complications to manage (Alosaimi et al., 2019). Due to some of these related problems, many people in developing countries resort to alternative source of remedy especially herbal medicines. The availability of medicinal plants and ample experience on wound healing is another reason for many people in Nigeria and other developing countries to utilize medicinal plants in the remedy of diabetic foot ulcers and related problems (Abubakar et al., 2018; Oguntibeju, 2019).


Ethno-medicine (also referred to as traditional, alternative or complementary medicine) is the oldest form of healthcare system worldwide and is used in the prevention and treatment of physical and mental illnesses within local and regional healing practices (Yuan et al., 2016). It incorporates the use of substances (animals, plants and mineral elements), dosages and practices based on socio-cultural customs, beliefs, skills and observation of specific group largely herbalists and traditional therapists (WHO, 2013). The practice of ethno-medicine in Nigeria is also well established (Kankara et al., 2015; Shinkafi et al., 2015). Available data have shown that natural products including medicinal plants are highly effective against diabetic foot ulcers and associated problems (Lau et al., 2009; Delshad et al., 2017; Oguntibeju, 2019). Indeed, medicinal plants were shown to have immense capacity for facilitating wound healing, controlling of infection, reducing the period of hospitalization as well as the number of lower limb amputations associated with diabetic foot ulcers (Tiwary et al., 2011; Lakshmi et

al., 2016; Oguntibeju, 2019). Even though individuals have been using medicinal plants to cure diabetic foot ulcers in Kano state for a long time, their application has not been documented. The knowledge and practice of ethno-medicine is mostly passed down from peers to peers verbally (Inngjerdinge et al., 2004; Kankara et al., 2015); this may pose a negative effect on native knowledge because it may vanish over time. Thus, documentation of the ethno-medical practices will provide not only significant data on the plants used against diabetic foot ulcers but also relevant reference point information that may facilitate their conservation. Furthermore, such information are starting points for drug discovery and pharmacological studies of new drug leads. This study therefore, aimed to explore the ethno-medical practices in the treatment of diabetic foot ulcers in Kano state, Nigeria.

2. Materials and Methods

2.1. Study area

The study was carried out in Kano State metropolis which is located between latitudes 11°52′0′N and 12°7′0′N and longitudes 8°23′30′E and 8°38′0′E. It is the largest urban area in north-western Nigeria (Figure 1). The metropolitan area consists of eight Local Government Areas (Dala, Fagge, Gwale, Kumbotso, Municipal, Nassarawa, Tarauni and Ungogo) out of the 44 Local Governments that make up Kano State. Most of the people living in this area belong to the Hausa ethnic group.

Figure 1: Study area; Dala, Fagge, Gwale, Kumbotso, Municipal, Nassarawa, Tarauni and Ungogo Local Governments of Kano State, Nigeria (<u>Source:</u> <u>www.scirp.org</u>).

2.2. Study groups

Kano metropolis has a high number of traditional herbalists who provide health care services. The herbalists and the diabetic foot ulcer patients form the target groups of the population for the ethnobotanical survey. A cross-sectional suvey and systematic random sampling was used to select the target groups.

2.3. Identification of target groups

Locations of knowledgeable herbalists from the study area were identified by local administrators. Murtala Muhammed Specialists Hospital was selected as the study area for the identification of diabetic foot ulcer patients.

2.4. Informed consent/ ethical approval

Unwritten informed consent was gotten from the respondents to participate in the research prior to the interview (Tugume *et al.*, 2016). The permission to conduct this research at Murtala Muhammed Specialists Hospital in order to get information from diabetic foot ulcer patients was acquired from Ministry of Health/Hospital Management Board of Kano State with a reference number MMSHZ/0324/III/167.

2.5. Ethnobotanical survey

The survey was conducted out between July and December, 2017 through semi-structured interviews in Hausa language. Semi-structured questionnaire which was written both in English and the state native language was also administered to document the data given by the respondents. The questionnaire consisted of demographic data, knowledge of diabetes and information of the plants used which includes local plant names, plant part use, methods of preparation and mode of administration. Certain incentives were given to some of the traditional herbalists to stimulate their participation in the research. Indeed, studies in Africa have turned to rewarding the respondents for their information and time (Gbolade, 2009).

2.6. Plant identification and validation

Samples of plants identified in the course of the survey were collected along the line. The specimens were identified and validated by a taxonomist in the Herbarium section of Department of Biological Sciences, Bayero University, Kano, and Department of Botany, Ahmadu Bello University, Zaria, where voucher specimens were deposited. The plant names were further validated in the plant list (www.theplantlist.org).

2.7. Literature survey

Additional information on medicinal plants used in the treatment of diabetic foot ulcer was acquired from available journal articles. The authenticity of data obtained from the respondents was assessed based on related ethno-medical claims or proof of phytochemical or pharmacological studies in the literature.

2.8. Data analysis

The socio-demographic data of the respondents were subjected to descriptive statistical analysis such as frequencies and percentages. Data on the ethnobotanical survey were analyzed using the Relative Frequency of Citation (RFC) and preference ranking.

2.8.1. Relative frequency of citation

The RFC reveals the relative significance of the species. For each species, the RFC was determined using the relationship: RFC=NC/TI×100 (Tardio and Pardo-de-Santayana, 2008), where NC is the number of citation of the plant and TI is the total number of informants

2.8.2. Preference ranking

Fifteen (15) most frequently used plants for the treatment of diabetic foot ulcer in this study based on RFC were subjected to preference ranking using the method described by Martin, (1995) and Tugume *et al.* (2016). The plants were mentioned to ten key informants (knowledgeable herbalists) for ranking according to effectiveness of the species. The values allocated for each species by the informants were aggregated to get the whole rank value. The plant species were positioned in descending order with the species that had the highest total number ranked first.

3. Results and discussion

Traditional form of medicine forms an integral part of peoples' culture since time immemorial and has played a significant role in the treatment of human diseases (Burton *et al.*, 2015). This encompasses the entire knowledge, expertise and tradition that are based on the philosophies and experiences native to diverse cultures which are used to preserve health as well as to prevent, diagnose, improve, or treat physical and mental illness (WHO, 2013). A good knowledge of traditional medicine that involves the use of medicinal plants is known among the people of northern Nigeria (Shinkafi *et al.*, 2015). Certainly, various studies have also reported the use of medicinal plants in the treatment of various human ailments including DM by the inhabitants of Kano State (Danbatta and Aliyu, 2011; Abubakar *et al.*, 2017; Ali *et al.*, 2017; Negbenebor *et al.*, 2017). Diabetic foot ulceration, a common and severe complication of DM is also managed by herbal medical practitioners in Kano using different forms of herbal remedies; and the efficacy of such remedies are widely acclaimed by people in the community. This study reported the ethno-medical

practices used in the treatment of diabetic foot ulcers in Kano metropolis. It also highlighted the important medicinal plants most cited and preferred for the treatment of the disease. This may possibly promote conservation of the important indigenous medicinal plants and also serve as a step forward towards discovering new lead drugs against the disease.

A total of 300 respondents were interviewed across the Local Government Areas of Kano metropolis. These include herbalists (67%) and diabetic foot ulcer patients (33%). The herbalists constituted of males (44%) and females (22%). Most of the herbalists (25%) were between the age of 41-50 years followed by ages between 51 years and above (22%) (Table 1).

Table 1. Socio-demog	raphic	informati	on of the	respondents
----------------------	--------	-----------	-----------	-------------

Parameter	Respondents	Specification	N (%)
Size	Herbalist	_	200 (67)
	DFUP	-	100 (33)
Category	Herbalist	Divulge information	142 (47)
		Refused to divulge	58 (19)
	DFUP	Used known herb	62 (21)
		Used unknown herb	20(7)
		Don't use	18 (6)
Gender	Herbalist	Males	133 (44)
		Females	67 (22)
	DFUP	Males	56 (19)
		Females	44 (15)
Age (years)	Herbalist	20-30	8 (3)
		31-40	50 (17)
		41-50	74 (25)
		51-above	68 (22)
	DFUP	20-30	0(0)
		31-40	10 (3)
		41-50	35 (12)
		51- above	55 (18)

N = number of respondent, DFUP = diabetic foot ulcer patient

Of the diabetic foot ulcer patients interviewed, 15% were females and 19% were males. Also, 18% of the foot ulcers were found in diabetic patients aged between 51 years and above while 12% in age range of 41-50 years (Table 1). During the interview, 68% of the respondents (47% herbalists that divulge information plus 21% diabetic foot ulcer patients that use known herbs) gave clear knowledge about the plants used in the remedy of diabetic foot ulcer. Respondents that did not give clear information about the medicinal plants were excluded from further studies and only their data was obtained. demographic The sociodemographic information of the respondents showed that majority of the herbalists in Kano metropolis are above 40 years of age and some of them did not divulge information on their ethno-medical practices even with a reward. This shows that as time passes by,

important information on their ethno-medical practices may be lost following the departure of the older age groups. The herbalists that divulged information about the medicinal plants used against diabetic foot ulcers were able to give clinical presentation of diabetes mellitus and diabetic foot ulcers from their responses. They considered that increased urination, increased thirst, fatigue and slow wound healing are the major indications for the treatment of the disease.

A total of thirty six plant species were identified and their RFCs ranged from 0.5 to 14.7%. The highest RFC was that of Moringa oleifera (14.7%), followed by Anisopus mannii (12.3%) and Cadaba farinosa (10.3%) (Table 2). The RFC is applied to pick out potential species requiring further studies and recommendation in drug development. The index also validates the rate of recurrence of citation of a medicinal plant species used for different ailments. In this study, Moringa oleifera had the highest RFC followed by Anisopus mannii, Cadaba farinosa, Guiera senegalensis and Leptadenia hastata. The antidiabetic potentials of Moringa oleifera has been widely reported (Muhammad et al., 2016) and it has been shown to accelerate wound healing through augmentation of cell proliferation and repositioning of normal dermal fibroblast cells (Gothai et al., 2016). In addition, Moringa oleifera inhibits bacterial infections associated with diabetic foot ulcers (Fouad et al., 2019). Similarly, the wound healing activities of Anisopus mannii and Cadaba farinosa have been reported (Telrandhe and Uplanchiwar, 2013).

Table 2. Plant species used in the treatment of diabetic foot ulcers in Kano state and their frequency of citation.

Botanical name	NC	RFC
Acacia nilotica (L.) Delile	14	6.9
Albizzia chevalieri Harms	10	4.9
Allium cepa L.	2	1.0
Allium sativum L.	1	0.5
Anisopus mannii N.E.Br.	25	12.3
Anogeissus leiocarpus (DC.) Guill. & Perr.	19	9.3
Artemisia annua L.	17	8.3
Balanites aegyptiaca (L.) Delile	10	4.9
Borassus aethiopum Mart.	5	2.5
Boswellia dalzielii Hutch.	16	7.8
Byrsocarpus coccineus Schum. & Thonn.	2	1.0
Cadaba farinosa Forssk.	21	10.3
Cassia singueana Oliv.	17	8.3
Cassia tora L.	4	2.0
Chamaecrista mimosoides (L.) Greene	6	2.9
Dichrostachys cinerea (L.) Wight & Arn.	5	2.5
Eucalyptus camaldulensis Dehnh.	2	1.0
Ficus glumosa Delile	14	6.9
Guiera senegalensis J.F. Gmel.	20	9.8
Ipomoea asarifolia (Desr.) Roem.& Schult	1	0.5
Jatropha curcas L.	4	2.0
Lamium purpureum L.	1	0.5
Lannea microcarpa Engl. & K. Krause	16	7.8
Leptadenia hastata (Pers.) Decne	20	9.8
Momordica balsamina L.	1	0.5
Moringa oleifera Lam.	30	14.7
Nymphaea lotus L.	1	0.5
Parkia biglobosa (Jacq.) G. Don	5	2.5
Piliostigma reticulatum (DC.) Hochst	11	5.4
Prosopis africana (Guil & Perr) Taub.	8	3.9
Senna occidentalis (L.) Link	2	1
Strychnos spinosa Lam.	2	1
Syzygium aromaticum (L.) Merr. & L.M. Perry	3	1.5
Ziziphus mauritiana Var.	12	5.9
Ziziphus mucronata Willd.	1	0.5
Ziziphus spina-christi (L.) Desf.	6	2.9

NC = Number of citation, RFC = Relative frequency of citation

Detailed report on the plants used for diabetic foot ulcers in the study area is presented in Table 3. The table displayed the plant species, their families, local names, parts used, methods of preparation and administration. A sum of 36 medicinal plant species representing 21 families and 32 genera were reported to be used in the treatment of diabetic foot ulcer in Kano metropolis (Table 3).

The family Fabaceae had the highest number of species (10) followed by Rhamnaceae (3). Alliaceae, Combretaceae, Asclepiadaceae and Myrtaceae had two species each (Figure 2). The Fabaceae (Leguminosae) family is the third-largest land plant family with 751 genera and approximately 19,000 species. This was followed by the Rhamnaceae family which has 55 genera and about 950 species (Christenhusz and Byng, 2016). These families contain important secondary metabolites (like alkaloids, flavonoids, saponins and tannins) which act individually or synergistically to facilitate blood clotting, combat infections and promote wound healing processes (Thakur et al., 2011). Alkaloids and their congeners are used for their analgesic, anti-inflammatory and antibacterial properties (Mahibalan et al., 2016). Flavonoids are important compounds with biological actions including antimicrobial, anti-inflammatory, antioxidant, antiproliferative, antiviral and wound healing activity (de Albuquerque et al., 2016). Tannins possess astringent properties which facilitate the healing of inflamed tissues and wounds (Su et al., 2017; Salihu et al., 2018).

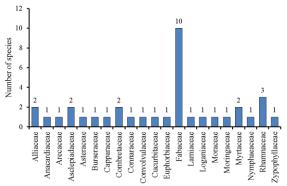
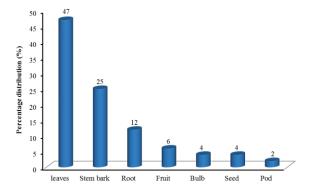



Figure 2. Distribution of plant families used for the treatment diabetic foot ulcer in Kano state, Nigeria.

Among the plant parts used, the leaves account for the highest proportion (47%) followed by stem bark (25%), roots (12%), fruits (6%), bulbs (4%), seeds (4%) and pods (2%) (Figure 3).

Figure 3: Plant parts used for the treatment diabetic foot ulcer in Kano state, Nigeria.

Various plant parts have values in the preparation of remedies for diabetic foot ulcers, and the leaves account for the highest proportion of the parts used followed by stem bark. This is in line with other reports that revealed the leaves as the most frequently used plant material for wound healing and treatment of leg ulcers (Inngjerdinge *et al.*, 2004; Nwafor *et al.*, 2018). Various ethnobotanical studies in Kano state and other parts of Nigeria also showed that leaves and stem bark were the frequently used plant parts in traditional medicine (Abubakar *et al.*, 2017; Ali *et al.*, 2017; Fingesi *et al.*, 2018). The use of leaves and stems may be attributed to their accessibility and abundance of bioactive compounds which are known to be accountable for the activity of medicinal plants.

The plants investigated are used either freshly or after shade drying. The recipes for diabetic foot ulcers include decoctions, macerates, powders, ashes and oils. The survey showed that decoction (44.7%) was the commonly used method of preparation followed by powder (31.6%), maceration (10.5%), pounding (8%), ashing (2.6%) and oil (2.6%) (Figure 4).

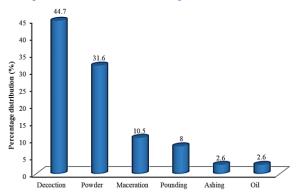
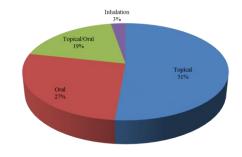


Figure 4: Methods of preparation of the plants used for the treatment diabetic foot ulcer in Kano state, Nigeria.

Decoctions and powders were the most common methods because the medicaments are easily prepared by mixing with tea, pap or soup. These two methods have also been reported to be popular amongst herbal medical practitioners (Umair *et al.*, 2017). In some cases, two or more plant species are used along with other ingredients such as onions, milk, honey and cock fats. These preparation are similar to those reported in other studies (Inngjerdinge *et al.*, 2004; Delshad *et al.*, 2017; Oguntibeju, 2019).

Table 3. Medicinal plants used for the treatment of diabetic foot ulcers in Kano state, Nigeria.

Botanical name	Family	Local name	Habit	Voucher number	Parts used	For m	Preparation	Route of administra tion	Other ailments used for	Reference
Acacia nilotica (L.) Delile	Fabaceae	Bagaruwa	Tree	BUKHAN186	Р	Dried	Powder	Topical	Wounds, Pile	Kankara <i>et al.</i> , 2015; Ali <i>et al.</i> , 2017
Albizzia chevalieri Harms	Fabaceae	Katsari	Tree	BUKHAN378	SB, L	Dried	Powder	Topical	Diabetes, HTN, cancer	Noté <i>et al.</i> , 2017
Allium cepa L.	Alliaceae	Albasa	Herb	BUKHAN370	B, R	Fresh	Pounded with cock fat	Topical	Cancer, liver disease, snake bite	Ali <i>et al.</i> , 2017; Marrelli <i>et al.</i> , 2018
Allium sativum L.	Alliaceae	Tafarnuwa	Herb	BUKHAN297	В	Dried	Maceratio n	Oral	Catarrh, cold, cough, diabetes	Danbatta and Aliyu, 2011; Abubakar <i>et</i> <i>al.</i> , 2017
Anisopus mannii N.E.Br.	Asclepiadaceae	Kashe zaki	Herb	BUKHAN211	L, SB, R	Dried	Powder	Oral with milk	Diabetes	Sani <i>et al.</i> , 2019
Anogeissus	Combretaceae	Marke	Tree	BUKHAN29	SB	Fresh	Decoction	Oral and	Skin diseases,	Inngjerdingen


<i>leiocarpus</i> (DC.) Guill. & Perr.								topical	fever, malaria, diarrhoea, stomach ache, wounds	<i>et al.</i> , 2004; Chaabi <i>et al.</i> , 2008
Artemisia annua L.	Asteraceae	Tazargade	Herb	BUKHAN652	L	Dried	Maceratio n	Oral	Fever and vomiting	Ali et al., 2017
Balanites aegyptiaca (L.) Delile	Zygophyllaceae	Aduwa	Tree	BUKHAN359	SB, F	Dried	Decoction	Oral and topical	Malaria, wounds, jaundice, intestinal worms, syphilis, epilepsy, skin disease, diabetes, dysentery	Anani <i>et al.</i> , 2015; Chothani and Vaghasiya, 2011; Abou Khalil <i>et al.</i> , 2016
<i>Borassus</i> <i>aethiopum</i> Mart.	Arecaceae	Giginya	Palm	BUKHAN276	S	Dried	Ash	Topical	STI, cutaneous fungal infections, and measles	Sakande <i>et al.</i> , 2011
Boswellia dalzielii Hutch.	Burseraceae	Hanu	Tree	BUKHAN362	SB	Dried	Maceratio n	Oral	Rheumatism, fever, pile,convulsi ons, GI troubles, diabetes	Nazifi <i>et</i> <i>al.</i> ,2017; Mbiantcha <i>et</i> <i>al.</i> , 2020
Byrsocarpus coccineus Schum. & Thonn	Connaraceae	Tsamiyar- kasa	Herb	ABU 864	L, SB	Fresh	Maceratio n	Topical	Pile, cancer, gonorrhea, leg ulcer,	Christian <i>et al.</i> , 2015; Nwafor <i>et al.</i> , 2018; Ukwade <i>et al.</i> , 2020
Cadaba farinosa Forssk.	Capparaceae	Bagayi	Shrub	BUKHAN491	L	Dried	Powder	Topical	Skin and breast cancer, diabetes	Ezekiel and Tadzabia 2015; Sani <i>et al.</i> , 2019
Cassia singueana Oliv.	Fabaceae	Runhu	Shrub	BUKHAN316	L	Dried	Powder	Topical	Fever, malaria, conjunctivitis, impotence, stomach upset, diabetes	Stephen <i>et al.</i> , 2017
Cassia tora L.	Fabaceae	Tafasa	Shrub	BUKHAN307	L	Dried	Decoction	Topical	Diabetes, constipation, skin infection	Ogunkunle and Ladejobi, 2006; Sani <i>et al.</i> , 2020
Chamaecrista mimosoides (L.) Greene	Fabaceae	Bagaruwar kasa	Herb	_	L, SB	Dried	Decoction	Oral and topical	diarrhea and dysentery	Ajaib and Khan, 2015
Dichrostachys cinerea (L.) Wight & Arn.	Fabaceae	Dundu	Shrub	BUKHAN383	L	Dried	Powder	Topical	Dysentery, toothache, headache, elephantiasis, gonorrhea, boils, leprosy, syphilis, cough, snake bites	Ayeni and Kayoed, 2019
Eucalyptus camaldulensis Dehnh.	Myrtaceae	Bishiyar turare	Tree	BUKHAN347	L	Fresh	Oil or leaf decoction	Topical	Respiratory disease, bleeding, wounds, pain	Sabo and Knezevic, 2019
Ficus glumosa Delile	Moraceae	Kawuri	Tree	BUKHAN607	SB	Dried	Decoction	Oral	Edema, HTN, hemorrhoid, skin diseases, diabetes	Ntchapda, <i>et</i> <i>al.</i> , 2014
Guiera senegalensis J.F. Gmel.	Combretaceae	Sabara	Shrub	BUKHAN32	L	Dried	Decoction	Oral and topical	Diarrhoea, chicken pox, diabetes	Ohemu <i>et al.</i> , 2014; Kankara <i>et al.</i> , 2015; Shinkafi <i>et al.</i> ,

-	<u> </u>					5				2015
Ipomoea asarifolia (Desr.) Roem. & Schult	Convolvulaceae	Duman rafi	Herb	BUKHAN152	L	Dried	Decoction	Oral	Dermatitis, scabies, syphilis, skin ulcers, wounds	de Albuquerque <i>et</i> <i>al.</i> , 2007; Agra <i>et al.</i> , 2007
Jatropha curcas L.	Euphorbiaceae	Bini/cini da zugu	Shrub	BUKHAN60	SB	Dried	Decoction	Topical	Jaundice, sores, wounds, renal infection, Gonorrhoea, hair lice	Patil <i>et al.</i> , 2013
Lamium purpureum L.	Lamiaceae	Bunsurun fage	Herb	BUKHAN257	L	Dried	Powder	Inhalation	Diarrhoea	Vergun <i>et al.</i> , 2019
Lannea microcarpa Engl. & K. Krause	Anacardiaceae	Faru	Tree	BUKHAN280	L	Dried	Decoction	Oral	Conjunctivitis, stomatitis and gingivitis, ulcers, wounds	Picerno <i>et al.</i> , 2006
<i>Leptadenia</i> <i>hastata</i> (Pers.) Decne	Asclepiadaceae	Yadiya	Herb	BUKHAN248	L, SB, R	Fresh	Decoction with onions	Oral	Diabetes, HTN, catarrh, skin diseases	Sanietal.,2019;DanbattaandAliyu,2011
Momordica balsamina L.	Cucurbitaceae	Garahuni	Shrub	BUKHAN311	L	Dried	Decoction	Topical	Navel pain,	Kankara <i>et al.</i> , 2015
Moringa oleifera Lam.	Moringaceae	Zogale	Tree	BUKHAN11	L	Fresh	Decoction	Oral and topical	Muscle cramps, oedema, cough, diabetes	Nadkarni, 2009; Shinkafi <i>et al.</i> , 2015
Nymphaea lotus L.	Nymphaeaceae	Bado	Herb	BUKHAN356	R	Dried	Decoction	Oral and topical	Guinea worm infection and rheumatism	Kameni <i>et al.</i> , 2017
Parkia biglobosa (Jacq.) G. Don	Fabaceae	Dorawa	Tree	BUKHAN262	F, SB	Dried	Powder	Topical	Dysentery, diabetes, malaria, tonic	Musara <i>et al.</i> , 2020
Piliostigma reticulatum (DC.) Hochst	Fabaceae	Kalgo	Shrub	BUKHAN72	S	Fresh	Pounding	Topical	Dysentery, diarrhoea, inflammation, infections, pain, smallpox	Zerbo <i>et al.</i> , 2010
<i>Prosopis</i> africana (Guil & Perr) Taub.	Fabaceae	Kirya	Tree	BUKHAN193	SB, L, R	Dried	Powder	Topical	skin infections, intestinal worms, diabetes	Ayanwuyi et al., 2010
Senna occidentalis (L.) Link	Fabaceae	Rai dore	Shrub	BUKHAN73	L	Fresh	Pounding	Topical	Skin disorders, wounds, fever, typhoid, oedema, diabetes, constipation	Gadanya and Muhammad, 2018
Strychnos spinosa Lam.	Loganiaceae	Kokiya	Tree	BUKHAN127	L	Dried	Powder	Oral with milk	snakebite, ulcers, fever, wounds, headache, GI problems, venereal diseases, leprosy, diarrhea	Neuwinger, 1996
Syzygium aromaticum (L.) Merr. & L.M. Perry	Myrtaceae	Kanumfari	Herb	BUKHAN342	F	Dried	Decoction	Oral	toothache, burns, mouth infection, cough and catarrh	Aiyeloja and Bello, 2006; Prashar <i>et al.</i> , 2006; Ali <i>et al.</i> ,

										2017
Ziziphus mauritiana Var.	Rhamnaceae	Magarya	Tree	BUKHAN233	L	Dried	Powder	Topical	Jaundice, diabetes	Kankara <i>et al.</i> , 2015; Shinkafi <i>et al.</i> , 2015
Ziziphus mucronata Willd.	Rhamnasae	Magaryar kura	Tree	BUKHAN112	R	Dried	Decoction	Topical	Depression, diabetes	Mongalo <i>et al.</i> , 2020
Ziziphus spina- christi (L.) Desf.	Rhamnaceae	Kurna	Shrub	BUKHAN269	L	Dried	Powder	Topical	Pulmonary ailments, fever, wounds, dysentery	Abalaka <i>et al.</i> , 2010

Parts used (P = Pod, SB = Stem bark, L = Leaves, B = Bulb, R = Roots, F = Fruits, S = Seeds); GI = Gastrointestinal, HTN = Hypertension

Considering the mode of administration of the preparations, most of the preparations are administered via the topical route (51%). This include those used to wash the wounds and those applied as poultices. Other routes of administration are oral (27%), a combination of oral and topical (19%) and inhalation (3%) (Figure 5). In some situations, a single plant extract is administered through both oral and topical route and the least is inhalational route. Some of the topical preparations are used to either wash the wounds or are applied as poultices; while the powders are either taken orally with milk or yoghurt, or applied as ointment with cock fat. These forms of administration were also described in previous reports (Delshad *et al.* 2017; Oguntibeju, 2019).

Figure 5. Methods of administration of the preparations used for the treatment diabetic foot ulcer in Kano state, Nigeria.

Table 4. Some reported pharmacological activities and isolated compounds present in the identified plants.

Plant species	Pharmacological activity	Isolated compounds	References
Albizzia chevalieri Harms	Antibacterial, antioxidant, hypoglycaemic, anticonvulsant	Chevalierosides A–C (1–3)	Noté et al., 2017; Ahmed <i>et al.</i> , 2019
Allium cepa L.	Antioxidant, antigenotoxic, antiproliferative	Quercetins, anthocyanins	Fredotovic et al., 2017
Allium sativum L.	Antibacterial, antioxidant, anti- inflammatory, antidiabetic, anticancer	Alliin, Allicin, E-Ajoene,Z- Ajoene	Batiha et al., 2020a
Anisopus mannii N.E.Br.	Antidiabetic, anti-inflammatory, antimicrobial, anti- carcinogenic, anti-lipideamic, wound healing	Monososrin, Pentacyclic triterpene esters, Longispinogenin 3-O-β-D- glucopyranoside	Aliyu <i>et al.</i> , 2011; Zaruwa <i>et al.</i> , 2013, 2018
Anogeissus leiocarpus (DC.) Guill. & Perr.	Antioxidant, anti-inflammatory, anticancer	Quinic acid, Hexahydroxydiphenoylhexos, Gallic acid, Catechin,Epicatechin	Orlando et al., 2019
Artemisia annua L.	Antimicrobial, antioxidant, antidiabetic, anti-inflammatory	Artimisin, coumarins, Quercetins	Mesa et al., 2015
Balanites aegyptiaca (L.) Delile	Antitumor, antioxidant, antibacterial, antidiabetic, antimalarial	flavonoides, furanocoumarins, Diosgenin, N-trans- feruloyltyramine, N-cis- feruloyltyramine, trigonelline, balanitol, fatty acid	Al-Thobaiti and Abu Zeid, 2018
Borassus aethiopum Mart.	Antimicrobial, antioxidant, anti- inflammatory	Galacturonic acid	Assoi <i>et al.</i> , 2017; Assoi and Wicker, 2020
Boswellia dalzielii Hutch.	Antibacterial, antifungal	Incensole, gallic acid, protocatechuic acid, 4'-methoxy- (<i>E</i>)-resveratrol-3-orutinoside and β-sitosterol	Alemika et al., 2004
<i>Byrsocarpus coccineus</i> Schum. & Thonn.	Hypoglycemic, antioxidant, Anti-proliferative,	Quercetin 3-O-alpha-arabinoside (I), quercetin (II), quercetin 3-	Ahmadu <i>et al.</i> , 2007; Dada <i>et al.</i> , 2013

wound healing and anticancer isoorientin, bydroxy-benzoic acid, 2013 Cassia asingueana Oliv. Hepatoprotective, antioxidant, Cassia asingueana Oliv. Hepatoprotective, antioxidant, Anti-turnor, anti-inflammatory, antioxidant antioxiciant and particle, static, succina acid, unit diamato, tecentria mionovoides (L.) Anti-turnor, anti-inflammatory, antioxidant antioxiciant and particle, static, succina acid, unit diamato, tecentria mionovoides (L.) Antioxidant antioxiciant and particle, static, succina acid, unit diamato, antiplasmodial Dichorostepy cinerea (L.) Wight Antinectobial, anti-idaletic, anti-inflammatory, anti-inflammatory. Excalptus canadidulensis Dehnh Antimicrobial, anti-idaletic, anti-inflammatory, anti-inflammatory. Ficus ghamosa Delite Antioxidant, anti-inflammatory. Antioxidant, anti-acterial, anti- inflammatory, anticancer inflammatory. Antioxidant, anti-acterial, anti- targophin, palmacunycia, acid, epific acid, Pierce <i>et al.</i> , 2016. First <i>et al.</i> , 2017, Hanna <i>et al.</i> , 2017, Figinnitry examption and alti-acterial, anti- crafacanoic acid, 4,5-214. Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Antioxidant Anti		Hepatoprotective	beta-D-glucoside				
Casai tora L. Anti-turor, anti-inflammatory, anticica acid, uridin and public 2010 Casai tora L. Anti-turor, anti-inflammatory, anticica acid, uridin and tricotani-to, sigmasterol Jain and Patil, 2010 Chamacerista mimoxides (L.) Antibacterial, antiviral, antiplasmodial Queretin-3-O. Adevasi et al., 2017 Chamacerista mimoxides (L.) Antibacterial, antiviral, antiplasmodial Queretin-3-O. El-sharawy et al., 2017 Chamacerista mimoxides (L.) Antimicrobial, anti-diabetic, anti-inflammatory, antiviral Queretin-3-O. El-sharawy et al., 2017 Chamacerista mimoxides (L.) Antimicrobial, anti-diabetic, anti-inflammatory, antiviral Queretin-3-O. El-sharawy et al., 2015 Charage and the antiplasmodial Antimicrobial, anti-diabetic, anti-inflammatory, antiviral Pathologenia, 2019 Diare et al., 2016 Guiera secondoldensis J.F. Gnel. Antioxidant, anti-inflammatory, Charogenic acid, caffeic acid, and anti-inflammatory, anticancer Intra Antibic et al., 2016 Diare et al., 2016 Charogenic acid, caffeic acid, equilic acid, equ	Cadaba farinosa Forssk.	Antidiabetic, antibacterial, wound healing and anticancer	syringic acid, vanillic acid and 2- hydroxy- 4-methoxy benzoic acid	Telrandhe and Uplanchiwar 2013			
antioxidant antibacterial and hypotensive succinic acid, uridin and tricontan 1-lo, sigmasterol Chanacerista mimosokies (L.) Greene Antibacterial, antiviral, antiplasmodial - Adewusi et al., 2011 Chanacerista mimosokies (L.) Greene Antibacterial, antiviral, antiplasmodial Quercetin-3-O. tharmopyranoside, myricetin-3-O. chanmopyranoside, myricetin-3-O. chance anti-fila (Desr.) Sabo and Knezevic, 2019 Field Sciences, Carriella etivity Esters.isothujol, terbutylazine Kwazo et al., 2015. Differences antio-12, 2016. rutin Differences antio-12, 2016. rutin Ipomoea avarifolia (Desr.) Antioxidant, anti-inflammatory, anticancer Myrioticin al-cordia (L. Cordiant). Hardony myriocitin 3-Oa-L methoxyberraddetyd, curcuin Abdelgadir and Staden, 2015. rutin Lamiton purpureum L. Antioxidant Acteoside, shanzhiside methyl ester, carryotokic and lamalitohetic, epicatechin Sanda et al., 2006. mammopyranoside, pillocadi. Laptadenia hastata (Pers.) Decree Antioxidant, anti-inflammatory, anticancer anti- inflammatory, anticancer anti- cyclobocosme Sanda et al., 2017. Totion: Morinice obicferet Lam. Antibacterial, anti- inflam	Cassia singueana Oliv.	Hepatoprotective, antioxidants,	catechin	Sobeh et al., 2017			
Greene Outcrostation Classical systemerea Elsharawy et al., 2017 & Arm. Antibacterial, antiviral, etacalypus canaddulensis Dehnh. Antimicrobial, anti-diabetic, anti-inflammatory, antiviral effect Quercetin-3-O- thammopyranoside, myricetin-3- O-thammopyranoside, cuminal, phellandrene, aromadendren Sabo and Knezevic, 2019 Ficus glumosa Delile Antibacterial activity Esters, isothyol, terbutylazine Kwazo et al., 2015 Guiera senegalensis J.F. Gmel. Antioxidant, anti-inflammatory, antinamatory, anticaecron inflammatory, anticaecron rutin Myricitrin quercetin, 13.4.5 Dirar et al., 2016 Jarropha curcus L. Antibacterial, anti- inflammatory, anticaecron rutin Jatrophin, palmarunycin JC1 Hydroxy-4- methoxyberzaldehyd, curcuin curcuin Hydroxy-4- methoxyberzaldehyd, curcuin curcuin Antoixidant, anti- inflammatory, anticaecr, anti- inflammatory, anticaecr, anti- trypanosomal, attidiabetic Sanda et al., 2006 Cannoa microcarpa Engl. & K. Anti-inflammatory, anticaecrani, anti- inflammatory, sunticaecr, anti- trypanosomal, attidiabetic Sanda et al., 2015. Momordica balsamina L. Antibacterial, anti- inflammatory, sunticaecr, anti- inflammatory, sunticaecr, anti- inflammatory, sunticaecr, anti- ectia acid, hexadecanoic acid, 11- voradocaroic acid, 45-214- vora de Venter et al., 2009. Sanda et al., 2019. Morrieria Lam. Antibacterial, anti- inflammatory, sunticaecr, anti- sinfl	Cassia tora L.	antioxidant antibacterial and	succinic acid, uridin and	Jain and Patil, 2010			
& Arn. antiplasmodial mamopyranoside. myticetin-3- O-thamopyranoside. cursinal, antiplasmodial mamopyranoside. myticetin-3- O-thamopyranoside. cursinal, anti-diabetic Sabo and Knezevic, 2019 Eucalyptus canadululensis Dehh. Antinicrobial, anti-diabetic Hs-cineole. cursinal, anti-diabetic Sabo and Knezevic, 2019 Ficus glumosa Delile Antioxidant, anti-diabetic Myricitrin, garcetin, 13, 4.5 Dirar et al., 2015 Opmorea asartfolia (Dest.) Antioxidant, anti-inflammatory, antiamamory, anticancer Chlorogenic acid, caffeic acid, rutin Furado et al., 2016 Tamiam purpureum L. Antioxidant Acteoside, shanzhiside methyl ester, caryoptoside and lamabide Fuerado et al., 2006 Lamnea microcarpa Engl. & K. Anti-inflammatory, anticancer, anti- inflammatory, structure, and explose and al manibide Sanda et al., 2016. Moringa oleffera Lam. Antibacterial, anti- inflammatory, structure, andi- antidiabetic, antotantidiabetic, antininflammatory, antidiabeti		Antioxidant	-	Adewusi et al., 2011			
anti-inflammatory, antiviral effect phellandrene, aromadendren Ficus glumosa Delile Antioxidant, antidiabetic Esters, isothujol, technylazine Kwazo et al., 2015 Guiera senegalensis J.F. Gmel. Antioxidant, antidiabetic Myrichtin guervein, 1, 3, 4, 5 Dim et al., 2019, Miaffo et al., 2020 Ipomoea asarifolia (Desr.) Antioxidant, anti-inflammatory, inflammatory, anticancer Chlorogenic acid, caffeic acid, rutin Furtado et al., 2016 Itarrophin, palmarumycin JC1 Matika Schult Antioxidant Abdelgadir and Staden, 2013 Lamiam purpureum L. Antioxidant Acteoside, shanzhisde methyl ester, caryoptosid and Inamalbide Lama microcarpa Engl. & K. Antioxidant, antibacterial, anti- inflammatory, anticancer, anti- trypanosomal, antidiabetic Sanda et al., 2013; Haruna et al., 2017 Catadecnio acid, 4,5-2H- oxazole 5-one and eyclodocoane Van de Venter et al., 2008, Haruno et al., 2009; Gothal e altidiabetic, wound healing Sanda et al., 2013; Haruna et al., 2017 Moringa oleifera Lam. Antibacterial, anti- inflammatory, hypoglycemic – van de Venter et al., 2008, Hexadecanoic acid, elly etster, Moringa oleifera Lam. Antibacterial, antidiabetic, antioxidant Sanda et al., 2007; Fajemiroy et al., 2016 Parkia biglobosa (Jacq) G.Don Antibacterial, antidiabetic, antioxidant Myricitrin, N		· · · · ·	rhamnopyranoside, myricetin-3- O-rhamnopyranoside,	El-sharawy et al., 2017			
Guiera senegalensis J.F. Gmel. Antioxidant, antidiabetic Myricitrin, quercetin, 1, 3, 45. Dirar et al., 2019; Miaffo et al. Ipomoca asarifolia (Desr.) Antioxidant, anti-inflammatory, Chlorogenic acid, caffeic acid, Furtado et al., 2016 Antioxidant, anti-inflammatory, anticancer Antioxidant et al., 2016 Furtado et al., 2016 Lamium purpureum L. Antioxidant Antioxidant Abdelgadir and Staden, 2013 Lamea microcarpa Engl. & K. Anti-inflammatory, anticancer Hydroxy-4- The ory-myricein - Lamea microcarpa Engl. & K. Antioxidant, antibacterial, anti- actica acid, hexadecane, Sanda et al., 2013; Haruna et al., 2016 Lamea microcarpa Engl. & K. Antiinicrobial, hypoglycemic - Van de Venter et al., 2006. Moringa oleifera Lam. Antiibacterial, anti- hexadecanoic acid, 14.5-2H- Van de Venter et al., 2007 Moringa oleifera Lam. Antiibacterial, anti- Hexadecanoic acid, ethyl ester, 2.6- al. 2016 Moringa oleifera Lam. Antiibacterial, anti- Hexadecanoic acid, ethyl ester, 2.6- al. 2016 Parkia biglobosa (Jacq.) G.Don Antibacterial, anti- Ferulic acid, lupeol, epi-catechin Tandiaget et al., 2009; Gothai et al., 2017; Fajemiroy	Eucalyptus camaldulensis Dehnh.	anti-inflammatory, antiviral	1,8-cineole, cuminal,	Sabo and Knezevic, 2019			
Roem.& Schult rutin Jatropha curcas L. Antibacterial, anti- inflammatory, anticancer Jatrophin zupracum L. Abdelgadir and Staden, 2013 Lamium purpureum L. Antioxidant Actosoide, sharabiside methyl ester, caryoptoside and lamalbide Ito et al., 2006 Lamea microcarpa Engl. & K. Anti-inflammatory 4-methoxy-myricentin 3-O-o-L- thammopyranoside, gallic acid, epicatechin Picerno et al., 2006. Leptadenia hastata (Pers.) Decne Antioxidant, antibacterial, anti- irtypanosomal, anticancer, anti- irtypanosomal, antidiabetic Sanda et al., 2013; Haruna et al. 2017 Sanda et al., 2013; Haruna et al. 2017 Momordica balsamina L. Antibacterial, anti- inflammatory, hopolycemic, antidiabetic, wound healing Hexadecanoic acid, ethyl ester, antidiabetic, wound healing Nepolean et al., 2008 Moringa oleifera Lam. Antibacterial, anti- inflammatory, hopolycemic, antidiabetic, wound healing Hexadecanoic acid, lupol, epi-catechin Kamean et al., 2017; Fajemiroy et al., 2016 Nymphaea lotus L. Antibacterial, antidiabetic, antioxidant Ferulic acid, lupol, epi-catechin Kamean et al., 2000; Musara et al., 2020 Pilostigma reticulatum (DC.) Antibacterial, anti- inflammatory, antioxidant, antioxidant Gadanya and Muhammad, 2015 Senna occidentallis (L.) Link Antibacterial, anti- inflammatory, a			Myricitrin,quercetin,1,3,4,5- tetra-O-galloylquinic acid, gallic	Dirar et al., 2019; Miaffo et al.,			
inflammatory, anticancer Hydroxy-4- methoxybenzaldehyd, curcain Lamium purpureum L. Antioxidant Acteoside, shanzhiside methyl ester, caryoptoside and lamabide Lamnea microcarpa Engl. & K. Anti-inflammatory 4-methoxy-myricetin 3-O-a-L- rhannopyranoside, gallic acid, epicatechin Picerno et al., 2006 Leptadenia hastata (Pers.) Decne Antioxidant, antibacterial, anti- inflammatory, anticancer, anti- trypanosomal, antidiabetic acetic acid, hexadecane, eyclodocosane Sanda et al., 2013; Haruna et al. 2017 Momordica balsamina L. Antibacterial, anti- inflammatory, hypoglycemic - van de Venter et al., 2008 Moringa oleifera Lam. Antibacterial, anti- inflammatory, hypoglycemic, antidiabetic, wound healing Hexadecancic acid, ethyl ester, 2.6- Dimethyl-1.7-octadienes 3-ol Nepolean et al., 2007, Gothai et al., 2016 Nymphaea lotus L. Antibacterial, antidiabetic, antioxidant Ferulic acid, lupeol, epi-catechin attoxidant Kameni et al., 2010; Musara et al., 2020 Priko biglobosa (Jacq.) G.Don Antibacterial, antidiabetic, antioxidant Ferulic acid, lupeol, epi-catechin attoxidant Kameni et al., 2000; Musara et al., 2020 Prosopis africana (Guil & Perr) Antibacterial, wound healing thockst Hexacosanol, β-sitosterol, uthykampferol-3-methyl ether 2 Zeitoet al., 2018 Senna occidentalis (L.) Link </td <td></td> <td>Antioxidant, anti-inflammatory,</td> <td>-</td> <td>Furtado et al., 2016</td>		Antioxidant, anti-inflammatory,	-	Furtado et al., 2016			
ester, caryoptoside and lamalhide Lannea microcarpa Engl. & K. Anti-inflammatory 4-methoxy-myricetin 3-O-a-L rhamopyranoside, gallic acid, epicatechin Picerno et al., 2006. Krause Antioxidant, antibacterial, anti- inflammatory, anticancer, anti- trypanosomal, antidiabetic acetic acid, hexadecane, octadecanoic acid, 11- octadecanoic acid, 4.5-2H- oxazole-5-one and cyclodocosane Sanda et al., 2013; Haruna et al. 2017 Momordica balsamina L. Antimicrobial, hypoglycemic, antidiabetic, would healing Hexadecanoic acid, ethyl ester, Palmitic acid ethyl ester, antidiabetic, would healing Nepolean et al., 2009; Gothai e antioxidant Parkia biglobosa (Jacq.) G.Don Hochst Antibacterial, anti- antioxidant Ferulic acid, lupeol, epi-catechin antioxidant Ramen et al., 2000; Musara et al., 2010 Prosopis africana (Guil & Perr) Taub. Antibacterial, anti- inflammatory, antioxidant Ferulic acid, lupeol, epi-catechin antioxidant Coce allace Senna occidentalis (L.) Link Antibacterial, anti- inflammatory, antioxidant, hypoplipidaemic Achrosin, aloe-emodin, earyoplyllen Estike et al., 2018 Senna occidentalis (L.) Link Antibacterial, anti- inflammatory, antioxidant, hypoplipidaemic Sarracenin Tor-Anyiin et al., 2019 Syrygium aromatiumu (L.) Merr. & Antibacterial, anti- inflammatory, antioxidant, hypoplipidaemic Sarracenin Tor-Anyiin et al., 2012 <td>Jatropha curcas L.</td> <td></td> <td>Hydroxy-4-</td> <td>Abdelgadir and Staden, 2013</td>	Jatropha curcas L.		Hydroxy-4-	Abdelgadir and Staden, 2013			
Krause rhamnopyranoside, gallic acid, epicatechin Sanda et al., 2013; Haruna et al. 2017 Leptadenia hastata (Pers.) Decne Antioxidant, antibacterial, anti- inflammatory, anticancer, anti- trypanosomal, antidiabetic acetic acid, hexadecane, hexadecanoic acid, 11- octadecanoic acid, 4.5-2H- oxazole-5-one and cyclodocosane Sanda et al., 2013; Haruna et al. 2017 Momordica balsamina L Antibacterial, anti- inflammatory, hypoglycemic, antidiabetic, wound healing Hexadecanoic acid, ethyl ester, Palmitic acid ethyl ester, 2, 6- Dimethyl-1, 7-octadiene-3-ol Nepolean et al., 2009; Gothai et al., 2016 Nymphaea lotus L. Antibacterial, antidiabetic, antioxidant Myricitrin, Nympholides A and atioxidant Kameni et al., 2017; Fajemiroy et al., 2016 Parkia biglobosa (Jacq.) G.Don Antibacterial, antidiabetic, antioxidant Ferrulic acid, lupeol, epi-catchin antioxidant Tringal et al., 2000; Musara et al., 2020 Pilostigma reticulatum (DC.) Antibacterial, antidiabetic, inflammatory, antioxidant, hypolipidaemic Ferrulic acid, lupeol, epi-catchin antioxidant Ezike et al., 2010; Gocar et al., 2018 Senna occidentalis (L.) Link Antibacterial, anti- inflammatory, antioxidant, hypolipidaemic Antibacterial, anti- inflammatory, antioxidant, hypolipidaemic Cor-Ap-p- glucopyranoside Eaike et al., 2010; Gadanya and Muhammad, 2019 Syrygium aromaticum (L.) Merr.& Antibacterial, anti- inflammatory, antioxidant, hypolipidaemic Sarracenin Tor-Anyii	Lamium purpureum L.	Antioxidant	Acteoside, shanzhiside methyl	Ito et al., 2006			
inflammatory, anticancer, anti- trypanosomal, antidiabetichexadecanoic acid, 11- octadecanoic acid, 4,5-2H- oxaz0e1, 4,20082017Moringa oleifera Lam.Antibacterial, antidiabetic, antidiabetic, wound healing antioxidantHexadecanoic acid, ethyl ester, 2,6- Dimethyl-1, 7-octadiene-3-olNepolean et al., 2009; Gothai et al., 2016Nymphaea lotus L.Antibacterial, antidiabetic, antioxidantMyricitrin, Nympholides A and BKameni et al., 2017; Fajemiroy et al., 2018Parkia biglobosa (Jacq.) G.Don HochstAntibacterial, antidiabetic, antioxidantFerulic acid, lupeol, epi-catechin atioxidantTringali et al., 2000; Musara et al., 2020Piliostigma reticulatum (DC.) HochstAntibacterial, anti- inflammatory, antioxidant, inflammatory, antioxidant, hypolipidaemicHexacosanol, β-sitosterol, quercetin, β-sitosterol, Adate et al., 2019Scadarya and Muhammad, 2018Senna occidentalis (L.) Link L.M. PerryAntibacterial, ant		Anti-inflammatory	rhamnopyranoside, gallic acid,	Picerno et al., 2006.			
Momordica balsamina L. Antimicrobial, hypoglycemic - van de Venter et al., 2008 Moringa oleifera Lam. Antibacterial, anti- inflammatory, hypoglycemic, antidiabetic, wound healing Hexadecanoic acid, ethyl ester, Palmitic acid ethyl ester, 2,6- Dimethyl-1, 7-octadiene-3-ol Nepolean et al., 2009; Gothai e al., 2016 Nymphaea lotus L. Antibacterial, antidiabetic, antioxidant Myricitrin, Nympholides A and B Kameni et al., 2017; Fajemiroy et al., 2018 Parkia biglobosa (Jacq.) G.Don Antibacterial, antidiabetic, antioxidant Ferulic acid, lupeol, epi-catechin 3-O-gallate Tringali et al., 2000; Musara et al., 2020 Piliostigma reticulatum (DC.) Antibacterial, wound healing Hexacosanol, β-sitosterol, quercetin 3, isoquercetin, 1, 6-c- methylkaempferol-3-methyl ether 2 Ezike et al., 2010; Prosopis africana (Guil & Perr) Antibacterial, anti- inflammatory, antioxidant, hypolipidaemic Achrosin, aloe-emodin, emodin, oleic acid, physcion, quercetin hypolipidaemic Ezike et al., 2018 Senna occidentalis (L.) Link Antibacterial Antibacterial, antiviral, anti- inflammatory, antioxidant, hypolipidaemic Sarracenin Tor-Anyiin et al., 2015 Syzygium aromaticum (L.) Merr. & L.M. Perry Antibacterial, anti- tumor Eugenyl acetate, eugenol, and β- caryophyllene Batiha et al., 2012 Ziziphus mauritiana Var. Antibacterial, anti- tumor Zizyberanalinic a	Leptadenia hastata (Pers.) Decne	inflammatory, anticancer, anti-	hexadecanoic acid, 11- octadecanoic acid, 4,5-2H- oxazole-5-one and				
inflammatory, hypoglycemic, antidiabetic, wound healingPalmitic acid ethyl ester, 2,6- Dimethyl-1, 7-octatiene-3-olal., 2016Nymphaea lotus L.Antibacterial, antidiabetic, antioxidantMyricitrin, Nympholides A and BKameni et al., 2017; Fajemiroy et al., 2018Parkia biglobosa (Jacq.) G.Don Paliostigma reticulatum (DC.)Antibacterial, antidiabetic, antioxidantFerulic acid, lupeol, epi-catechin antioxidantTringali et al., 2000; Musara et al., 2020Plilostigma reticulatum (DC.)Antibacterial, anti- antioxidantGuercetin 3, isoquercetin, 1, 6-c- methylkaempferol-3-methyl ether 2Aderogba et al., 2005Prosopis africana (Guil & Perr) Taub.Antibacterial, wound healing ulcopyranosideHexacosanol, β-sitosterol, - Oscar et al., 2018Ezike et al., 2010; Oscar et al., 2018Senna occidentalis (L.) LinkAntibacterial, anti- inflammatory, antioxidant, hypolipidaemicAchrosin, aloe-emodin, emodin, oleic acid, physcion, quercetin Syzygium aromaticum (L.) Merr. & Antibacterial, anti- inflammatory antiviral, anti-inflammatory antiviral, anti-inflammatory antiviral, anti-inflammatorySarraceninTor-Anyiin et al., 2015Ziziphus mauritiana Var.Antibacterial, anti- including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic, 3-O-cis-p- alphitolicPalejkar et al, 2012Ziziphus spina-christi (L.) Desf.AntimicrobialEizyberanalinic acid, affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenineMongalo et al., 2020	Momordica balsamina L.	Antimicrobial, hypoglycemic		van de Venter et al., 2008			
Nymphaea lotus L. antioxidantAntibacterial, antidiabetic, antioxidantMyricitrin, Nympholides A and BKameni et al., 2017; Fajemiroy et al., 2018Parkia biglobosa (Jacq.) G.Don Piliostigma reticulatum (DC.)Antibacterial, antidiabetic, antioxidantFerulic acid, lupeol, epi-catechin 3-O-gallateTringali et al., 2000; Musara et al., 2020Piliostigma reticulatum (DC.) HochstAntioxidantQuercetin 3, isoquercetin, 1, 6-c- methylkaempferol-3-methyl ether 2Aderogba et al., 2005Prosopis africana (Guil & Perr) Taub.Antibacterial, wound healing urecetin, β-sitosterol, quercetin, β-sitosterol, olcic acid, physcion, quercetinEzike et al., 2010; Oscar et al., 2018Senna occidentalis (L.) Link L.M. PerryAntibacterial, anti- inflammatory, antioxidant, antiviral, anti-inflammatoryAchrosin, aloe-emodin, emodin, olcic acid, physcion, quercetinGadanya and Muhammad, 2018Strychnos spinosa Lam. L.M. PerryAntibacterial, anti- inflammatorySarraceninTor-Anyiin et al., 2015Ziziphus mauritiana Var. Ziziphus mauritiana Var.Antibacterial, anti- antiviral, anti-inflammatoryEugenyl acetate, eugenol, and β- caryophyllenePalejkar et al., 2010Ziziphus spina-christi (L.) Desf.Antibacterial , antioxidantzizyberanalinic, oleanolic, ursolic, 3-O- trans-alphitolic, acid, galitic acid, rutin, epicatechin, mucronin, abyssenineMongalo et al., 2020Ziziphus spina-christi (L.) Desf.AntimicrobialBetulin, stigmasterol, sitosterol, stosterol, stosterol, stosterol, ads et al., 2018	Moringa oleifera Lam.	inflammatory, hypoglycemic,	Palmitic acid ethyl ester, 2,6-	Nepolean et al., 2009; Gothai et al., 2016			
antioxidant3-O-gallateal., 2020Piliostigma reticulatum (DC.)AntioxidantQuercetin 3, isoquercetin, 1, 6-c- methylkaempferol-3-methyl ether 2Aderogba et al., 2005Hochstmethylkaempferol-3-methyl ether 2Ezike et al., 2010; Taub.Prosopis africana (Guil & Perr) Taub.Antibacterial, wound healing uercetin, β-sitosterol, quercetin, β-sitosterol, oscar et al., 2018Ezike et al., 2010; Oscar et al., 2018Senna occidentalis (L.) LinkAntibacterial, anti- inflammatory, antioxidant, hypolipidaemicAchrosin, aloe-emodin, emodin, oleic acid, physcion, quercetinGadanya and Muhammad, 2018Strychnos spinosa Lam.AntibacterialSarraceninTor-Anyiin et al., 2015Syzygium aromaticum (L.) Merr.& L.M. PerryAntioxidant, antibacterial, antiviral, anti-inflammatory antiviral, anti-inflammatoryEugenyl acetate, eugenol, and β- caryophylleneBatiha et al., 2020b caryophylleneZiziphus mauritiana Var.Antibacterial, anti- tumorincluding alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic, 3-O- trans-alphitolicPalejkar et al, 2012Ziziphus spina-christi (L.) Desf.AntimicrobialBetulin, stigmasterol, sitosterol, alphysenineMongalo et al., 2020	Nymphaea lotus L.	Antibacterial, antidiabetic, antioxidant	В				
Hochstmethylkaempferol-3-methyl ether 2Prosopis africana (Guil & Perr) Taub.Antibacterial, wound healing urrectin, β-sitosterol, quercetin, β-sitosterol, quercetin, β-sitosterol, quercetin, β-sitosterol, quercetin, β-sitosterol 3-O-β-D- glucopyranosideEzike et al., 2010; Oscar et al., 2018Senna occidentalis (L.) LinkAntibacterial , anti- inflammatory, antioxidant, hypolipidaemicAchrosin, aloe-emodin, emodin, oleic acid, physcion, quercetinGadanya and Muhammad, 2018 Mahanthesh et al., 2019Strychnos spinosa Lam.AntibacterialSarraceninTor-Anyiin et al., 2015Syzygium aromaticum (L.) Merr.& antiviral, anti-inflammatory tumorAntibacterial, anti- including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic, 3-O-cis-p- alphitolicPalejkar et al, 2012Ziziphus mucronata Willd.Antibacterial , antioxidantzizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenineMongalo et al., 2020Ziziphus spina-christi (L.) Desf.AntimicrobialBetulin, stigmasterol, sitosterol, attin stigmasterol, sitosterol, attin stigmasterol, sitosterol, attin attin, 2018			3-O-gallate	al., 2020			
Taub.quercetin, β-sitosterol 3-O-β-D-glucopyranosideOscar et al., 2018Senna occidentalis (L.) LinkAntibacterial , anti- inflammatory, antioxidant, hypolipidaemicAchrosin, aloe-emodin, emodin, oleic acid, physcion, quercetinGadanya and Muhammad, 2018Strychnos spinosa Lam.AntibacterialSarraceninTor-Anyiin et al., 2019Strychnos spinosa Lam.Antibacterial, antiviral, anti-inflammatoryEugenyl acetate, eugenol, and β- caryophylleneBatiha et al., 2020bZiziphus mauritiana Var.Antidiabetic, antibacterial, umorincluding alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolicPalejkar et al, 2012Ziziphus mucronata Willd.Antibacterial , antioxidantzizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenineMongalo et al., 2020Ziziphus spina-christi (L.) Desf.AntimicrobialBetulin, stigmasterol, sitosterol, Ads et al., 2018	-	Antioxidant	methylkaempferol-3-methyl	Aderogba et al., 2005			
Senna occidentalis (L.) Link Antibacterial , anti- inflammatory, antioxidant, hypolipidaemic Achrosin, aloe-emodin, emodin, oleic acid, physcion, quercetin Gadanya and Muhammad, 2018 Strychnos spinosa Lam. Antibacterial Sarracenin Gorvania Gadanya and Muhammad, 2018 Strychnos spinosa Lam. Antibacterial Sarracenin Tor-Anyiin et al., 2015 Syzygium aromaticum (L.) Merr.& L.M. Perry Antioxidant, antibacterial, antiviral, anti-inflammatory Eugenyl acetate, eugenol, and β- caryophyllene Batiha et al., 2020b Ziziphus mauritiana Var. Antidiabetic, antibacterial, tumor including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic Palejkar et al, 2012 Ziziphus mucronata Willd. Antibacterial , antioxidant zizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenine Mongalo et al., 2020 Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, Ads et al., 2018	1 0 0	Antibacterial, wound healing	quercetin, β-sitosterol 3-O-β-D-				
Syzygium aromaticum (L.) Merr.& L.M. Perry Antioxidant, antibacterial, antiviral, anti-inflammatory Eugenyl acetate, eugenol, and β- caryophyllene Batiha et al., 2020b Ziziphus mauritiana Var. Antidiabetic, antibacterial, umor Eugenyl acetate, eugenol, and β- caryophyllene Batiha et al., 2020b Ziziphus mauritiana Var. Antidiabetic, antibacterial, anti- tumor including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic Palejkar et al., 2012 Ziziphus mucronata Willd. Antibacterial , antioxidant zizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenine Mongalo et al., 2020 Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, Ads et al., 2018	Senna occidentalis (L.) Link	inflammatory, antioxidant,	Achrosin, aloe-emodin, emodin,	Gadanya and Muhammad, 2018;			
L.M. Perry antiviral, anti-inflammatory caryophyllene Ziziphus mauritiana Var. Antidiabetic, antibacterial, anti- tumor including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic Palejkar et al, 2012 Ziziphus mucronata Willd. Antibacterial , antioxidant zizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenine Mongalo et al., 2020 Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, Ads et al., 2018	Strychnos spinosa Lam.	Antibacterial	Sarracenin	Tor-Anyiin et al., 2015			
Ziziphus mauritiana Var. Antidiabetic, antibacterial, anti- tumor including alphitolic, betulinic, maslinic, oleanolic, ursolic, 3-O- trans-alphitolic Palejkar et al, 2012 Ziziphus mucronata Willd. Antibacterial, antioxidant zizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenine Mongalo et al., 2020 Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, Ads et al., 2018	L.M. Perry		caryophyllene	·			
Ziziphus mucronata Willd. Antibacterial, antioxidant zizyberanalinic acid, affeic acid, gallic acid, rutin, epicatechin, mucronin, abyssenine Mongalo et al., 2020 Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, sitosterol, and set al., 2018	Ziziphus mauritiana Var.	Antidiabetic, antibacterial, anti-	maslinic, oleanolic, ursolic, 3-O- trans-alphitolic, 3-O-cis-p-	Palejkar <i>et al</i> , 2012			
Ziziphus spina-christi (L.) Desf. Antimicrobial Betulin, stigmasterol, sitosterol, Ads et al., 2018	Ziziphus mucronata Willd.	Antibacterial, antioxidant	zizyberanalinic acid,affeic acid, gallic acid, rutin, epicatechin,	Mongalo et al., 2020			
ethy bleate quetethi	Ziziphus spina-christi (L.) Desf.	Antimicrobial	Betulin, stigmasterol, sitosterol, ethyl oleate quercetin	Ads et al., 2018			

Furthermore, approximately 36% were observed to have comparable ethno-medical claims in certain regions of the world (Picerno *et al.*, 2006; Rajan *et al.*, 2013).

Preference ranking of the 15 most used medicinal plants for the remedy of diabetic foot ulcer in Kano state metropolis are presented in Table 5.

Table 5. Preference ranking of the 15 most used medicinal plant for the treatment of diabetic foot ulcer in Kano state metropolis

Plant used	Plant part		Key informants (n=10) T							Total	Ran		
		А	В	С	D	Е	F	G	Н	Ι	J	(100)	k
Ficus glumosa	Stem bark	10	10	10	10	10	9	9	5	9	9	91	1^{st}
Anogeissus leiocarpus	Stem bark	9	9	5	8	9	10	10	8	10	8	86	2^{nd}
Guiera senegalensis	Leaves	8	8	8	9	8	8	8	9	8	10	81	3 rd
Acacia nilotica	Leaves	8	6	8	7	10	8	8	9	5	10	79	4^{th}
Ziziphus mauritiana	Leaves	10	7	8	10	8	9	9	5	4	7	77	5 th
Lannea microcarpa	Leaves	9	10	7	5	8	10	7	6	5	9	76	6^{th}
Balanites aegyptiaca	Stem bark	7	9	10	6	9	7	6	5	5	8	70	7^{th}
Boswellia delzielli	Stem bark	7	7	4	6	5	7	7	10	7	7	67	8^{th}
Moringa oleifera	Leaves	4	8	7	7	8	9	5	6	5	4	63	9^{th}
Cassia singueana	Leaves	4	5	6	9	3	9	10	7	5	4	62	10^{th}
Leptadenia hastata	Leaves	3	10	6	4	10	4	6	5	3	6	57	11^{th}
Anisopus mannii	Leaves	5	9	4	4	7	4	6	5	5	4	53	12 th
Albizia chevalieri	Leaves	10	4	5	7	6	5	3	2	4	5	51	13 th
Piliostigma reticulatum	Stem bark	7	5	4	8	3	3	4	6	2	5	47	14^{th}
Cadaba farinose	Leaves	5	3	4	6	5	8	3	5	4	2	45	15 th

The scores indicate rank values assigned to the plants based on their efficacy by the respondents. Highest score (10) was assigned for medicinal plants which the respondents thought were most effective against diabetic foot ulcer and the lowest score (1) for the least effective plant. A-J indicates the key informants.

Ficus glumosa, Moringa oleifera, Guiera senegalensis, Anogeissus leiocarpus, Acacia nilotica, Lannea microcarpa, Ziziphus mauritiana, Balanites aegyptiaca, Boswellia dalzielii and Cassia singueana appeared to be the first ten (10) most preferred medicinal plants for the treatment of diabetic foot ulcers. When different plant species are approved for a specific ailment, preference ranking aids categorization of the species in terms of preference of the respondents (Teman and Dillo, 2016). Interestingly, literature review of the first ten most preferred medicinal plants by the informants revealed that most of the plants exhibited antibacterial effect against some pathogenic bacteria. These include Boswellia delzielii (Dandashire et al., 2019), Balanites aegyptiaca (Tula et al., 2014), Anogeissus leiocarpus (Mann et al., 2008), Ziziphus mauritiana (Tanvir et al., 2015), Ficus glumosa (Umar et al., 2013), Acacia nilotica (Shekar et al., 2015) and Guiera senegalensis (Mamman and Isa, 2013). The wound healing properties of some of these plants (Lannea microcarpa, Zizipus mauritiana, Acacia nilotica and Anogeissus leiocarpus (Picerno et al., 2006; Rajan et al., 2013; Victor et al., 2013; Kankara et al., 2017) have also been reported.

4. Conclusion

The use of medicinal plants to treat diabetic foot ulcers is common in Kano state, north-western Nigeria. This study reported 36 medicinal plant species used to treat diabetic foot ulcers in Kano metropolis. There is need to validate such claims with the view of characterizing potential lead compounds that could be useful against diabetic foot ulcers. This report can also be of significant value to policy makers and safeguarding managers for viable management of the plant species.

5. Acknowledgement

The authors appreciate Sangarif Herbal Medicine Center, for assisting in the identification of knowledgeable herbalists for the ethnobotanical survey, as well as the respondents that participated in this research.

6. References

Abalaka, M.E., Daniyan, S.Y., and Mann, A. 2010. Evaluation of the antimicrobial activities of two Ziziphus species (*Ziziphus mauritiana* L. and *Ziziphus spinachristi* L.) on some microbial pathogens. *African Journal of Pharmacy and Pharmacology*, 4(4): 135–139.

- Abdelgadir, H.A. and Staden, J.V. 2013. Ethnobotany, ethnopharmacology and toxicity of *Jatropha curcas* L. (Euphorbiaceae): A review. *South African Journal of Botany*, 88: 204–218.
- Abou Khalil, N.S., Abou-Elhamd, A.S., Wasfy, S.I., El Mileegy, I.M., Hamed, M.Y. and Ageely, H.M. 2016. Antidiabetic and antioxidant impacts of Desert date (*Balanites aegyptiaca*) and Parsley (*Petroselinum sativum*) aqueous extracts: Lessons from experimental rats. *Journal of Diabetes Research*, 2016: 8408326.
- Abubakar, A., Danjuma, N.M., Ben, A., Chindo, B.A. and Nazifi, A.B. 2018. Anti-hyperglycaemic activity of tuber extract of *Chlorophytum alismifolium* Baker in streptozotocin-induced hyperglycaemic rats. *Bulletin of Faculty of Pharmacy Cairo University*, 56: 60–67.
- Abubakar, U.S., Yusuf, K.M., Abdu, G.T., Saidu, S.R., Jamila, G.A. and Fatima, A. 2017.
 Ethnopharmacological survey of medicinal plants used for management of pediatric ailments in Kano state, Nigeria. *Research Journal of Pharmacognosy*, 4(3): 29–39.
- Aderogba, M.A., Okoh E.K. and Idowu, T.O. 2005.
 Evaluation of the antioxidant activity of the secondary metabolites from *Piliostigma reticulatum* (DC.) Hochst. *Journal of Biological Sciences*, 5(2): 239–242.
- Adewusi, E.A., Moodley, N. and Steenkamp, V. 2011. Antioxidant and acetylcholinesterase inhibitory activity of selected Southern African medicinal plants. *South African Journal of Botany*, 77(3): 638– 644.
- Ads, E.N., Rajendrasozhan, S., Hassan, S.I., Sharawy, S.M.S and Humaidi, J.R. 2018. Phytochemical screening of different organic crude extracts from the stem bark of *Ziziphus spina-christi* (L.). *Biomedical Research*, 29(8): 1645–1652.
- Agra, M.F., Freitas, P.F. and Barbosa-Filho, J.M. 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. *Brazilian Journal of Pharmacognosy*, 17: 114–140.
- Ahmadu, A.A., Hassan, H.S., Abubakar, M.U. and Akpulu, I.N. 2007. Flavonoid glycosides from *Byrsocarpus coccineus* leaves. Schum and Thonn

(Connaraceae). African Journal of Traditional, Complementary and Alternative Medicines, 4(3): 257–260.

- Ahmed, A.D., Maiha, B.B., Danjuma, N.M. and Nazifi, A.B. 2019. Methanol leaf extract of *Albizia chevalieri* Harms possesses anticonvulsant activity in acute and chronic models of epilepsy. *Journal of Herbal Drugs*, 10(1): 1–9.
- Aiyeloja, A.A. and Bello, O.A. 2006. Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu State. *Educational Research and Review*, 1(1): 16–22.
- Ajaib, M., Khan, Z. 2015. Chamaecrista mimosoides and *Litsea glutinosa*: New record to the flora of Pakistan. *Biologia*, 6(11): 1–6.
- Alemika, T.E., Onawunmi, G.O. and Olugbade, T.A. 2004. Isolation and characterization of incensole from *Boswellia dalzielii* stem bark. *Journal of Pharmacy and Bioresources*, 1(1): 7–11.
- Ali, A., Akhtar, N., Ali, B.K., Shoaib, M.K., Rasul, A., Shahiq-UZ-Zaman, Khalid, N., Waseem, K., Mahmood, T. and Ali, L. 2012. Acacia nilotica: A plant of multipurpose medicinal uses. Journal of Medicinal Plants Research, 6(9): 1492–1496.
- Ali, M., Diso, S.U., Minjibir, A.A., Sani, J.A., Nas, F.S. and Yahya, A. 2017. Assessment of medicinal plants used in treatment of various ailments in Kano city Nigeria. *Asian Journal of Bioresources and Technology*, 2(4): 1–11.
- Aliyu, A.B., Musa, A.M., Abdullahi, M.S., Ibrahim, M.A., Tijjani, M.B., Aliyu, M.S. and Oyewale, A.O. 2011. Activity of saponin fraction of *Anisopus mannii* against some pathogenic microorganisms. *Journal of Medicinal Plants Research*, 5(31): 6709– 6713.
- Alosaimi, F.D., Labani, R., Almasoud, N., Alhelali, N., Althawadi, L. and AlJahani, D.M. 2019. Associations of foot ulceration with quality of life and psychosocial determinants among patients with diabetes; a case control study. *Journal of Foot Ankle and Research*, 12(57): 1–11.
- Al-Thobaiti, S.A. and Abu Zeid, I.M. 2018. Phytochemistry and pharmaceutical evaluation of Balanites aegyptiaca: an overview. *Journal of Experimental Biology and Agricultural Sciences*, 6(3): 453–465.
- Anani, K., Adjrah, Y., Améyapoh, Y., Karou, S.D., Agbonon, A., Souza, C.D. and Gbeassor, M. 2015. Antimicrobial activities of *Balanites aegyptiaca* (L.)

Delile (Balanitaceae) on bacteria isolated from water well. *Journal of Applied Pharmaceutical Science*, 5(10): 52–58.

- Assoi, S. and Wicker, L. 2020. Quality assessment of *Borassus aethiopum* Martfruit pulp pectin precipitated with various solvents. *African Journal of Food Science*, 14(8): 222–232.
- Assoi, S., Konan, K., Agbo, G.N., Dodo, H., Holser, R. and Wicker, L. 2017. Palmyra palm (*Borassus aethiopum* Mart.) fruits: novel raw materials for the pectin industry. *Journal of The Science of Food and Agriculture*, 97(7): 2057–2067.
- Ayanwuyi, L.O., Yaro, A.H. and Abodunde, O.M. 2010. Analgesic and anti-inflammatory effects of the methanol stem bark extract of *Prosopis africana*. *Pharmaceutical Biology*, 48(3): 296–299.
- Ayeni, M.J. and Kayode, J. 2019. Ethnobotanical survey of plants' stem barks used in Kaduna State of Nigeria. *International Journal of Pharmacology*, *Phytochemistry and Ethnomedicine*, 12: 23–34.
- Batiha, G.E., Alkazmi, L.M., Wasef, L.G., Beshbishy, A.M., Nadwa, E.H. and Rashwan, E.K. 2020b. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 10(2): 202.
- Batiha, G.E., Beshbishy, A.M., Wasef, L.G., Elewa, Y.H.A., Al-Sagan, A.A., Abd El-Hack, M.E., Taha, A.E., Abd-Elhakim, Y.M. and Devkota, H.P. 2020a. Chemical constituents and pharmacological activities of garlic (*Allium sativum* L.): A review. *Nutrients*, 12(872): 1–21.
- Burton, A., Smith, M. and Falkenberg, T. 2015. Building WHO's global strategy for traditional medicine. *European Journal of Integrative Medicine*, 7: 13–15.
- Chaabi, M., Benayache, S., Benayache, F., N'Gom, S., Koné, M., Anton, R., Weniger, B. and Lobstein, A. 2008. Triterpenes and polyphenols from Anogeissus leiocarpus (Combretaceae). *Biochemical Systematics Ecology*, 36: 59–62.
- Chothani, D.L. and Vaghasiya, H.U. 2011. A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. *Pharmacognosy Reviews*, 5(9): 55–62.
- Christenhusz, M.J.M. and Byng, J.W. 2016. The number of known plants species in the world and its annual increase. *Phytotaxa*, 261(3): 201–217.

- Christian, A.G., Monday, U.P., Linus, A.J., Chukwuma, E.B., Alozie, O.O., Ikenna, G.S. and Ikechukwu, N.K. 2015. Ulcer protective effect of *Byrsocarpus coccineus* leaf extract in different experimental animal models. *Journal of Coastal Life Medicine*, 3(9): 728–732.
- Dada, O.K., Akindele, A.J., Morakinyo, O.A., Sofidiya, M.O. and Ota, D. 2013. Hypoglycemic and antioxidant activities of the hydroethanolic leaf extract of *Byrsocarpus coccineus* Schumach. & Thonn. (Connaraceae). *Chinese Journal of Natural Medicines*, 11(6): 628–637.
- Danbatta, S.H. and Aliyu, B.S. 2011. A survey of major ethno medicinal plants of Kano North, Nigeria, their knowledge and uses by traditional healers. *Bayero Journal of Pure Applied Sciences*, 4(2): 28– 35.
- Dandashire, B.S., Magashi, A.M., Abdulkadir, B., Abbas, M.A., Goni, M.D. and Yakubu, A. 2019. Toxicological studies and bioactivity-guided identification of antimicrobially active compounds from crude aqueous stem bark extract of *Boswellia dalzielii*. *Journal of Advanced Veterinary and Animal Research*, 6(2): 183–192.
- de Albuquerque, R.D., Perini, J.A., Machado, D.E., Angeli-Gamba, T., Esteves, R.D., Santos, M. G., Oliveira, A.P. and Rocha, L. 2016. Wound healing activity and chemical standardization of *Eugenia pruniformis* Cambess. *Pharmacognosy Magazine*, 12(48): 288–294.
- de Albuquerque, U.P., Muniz de Medeiros, P., de Almeida, A.L., Monteiro, J.M., Machado de Freitas Lins Neto, E., Gomes de Melo, J. and dos Santos, J.P. 2007. Medicinal plants of the Caatinga (semiarid) vegetation of NE Brazil: a quantitative approach. *Journal of Ethnopharmacology*, 114(3): 325–354.
- Delshad, E., Tavakkoli-Kakhki, M. and Motavasselian, M. 2017. Successful repair of diabetic foot ulcer with honey-based treatment: A case report. *Iran Red Crescent Medical Journal*, 19(3): e41939.
- Dirar, A.I., Adhikari-Devkota, A., Mahadi, M.D.H., Wada, M., Watanabe, T. and Prasad, H.D. 2019. Phenolic compounds as potent free radical scavenging and enzyme inhibitory components from the leaves of Guiera senegalensis. *Natural Product Communications*, 14(6): 1–4.
- El-Sharawy, R.T., Elkhateeb, A., Marzouk, M.M., Abd El-Latif, R.R., Abdelrazig, S.E. and El-Ansari, M.A.

2017. Antiviral and antiparasitic activities of clovamide: the major constituent of *Dichrostachys cinerea* (L.) Wight et Arn. *Journal of Applied Pharmaceutical Science*, 7(9): 219–223.

- Everett, E. and Mathioudakis, N. 2018. Update on management of diabetic foot ulcers. Annals of the New York Academy of Science, 1411(1): 153–165.
- Ezekiel, J.S. and Tadzabia, K. 2015. Phytochemical analysis and biological assay of the methanolic leaf extract of *Cadaba farinosa* Forsk (Capparidaceae). *International Journal of Advanced Research*, 3(10): 1368–1375.
- Ezike, A.C., Akah, P.A., Okoli, C.O., Udegbunam, S., Okwume, N., Okeke, C. and Iloani, O. 2010. Medicinal plants used in wound care: A study of *Prosopis africana* (Fabaceae) stem bark. *Indian Journal of Pharmaceutical Sciences*, 72(3): 334–339.
- Fajemiroye, J.O., Adam, K., Jordan, K.Z., Alves, C.E. and Aderoju, A.A. 2018. Evaluation of anxiolytic and antidepressant-like activity of aqueous leaf extract of *Nymphaea lotus* Linn. in mice. *Iranian Journal of Pharmaceutical Research*, 17(2): 613–626.
- Fingesi, U.I., Buochuma, A. and Abdulrahman, Q.A. 2018. Ethnobotanical survey of medicinal plants used in treating viral infection in Saki west Local Government Area, Oyo state, Nigeria. *World News of Natural Sciences*, 17: 89–101.
- Fouad, E.A., Abu Elnaga, A. and Kandil, M.M. 2019. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (*Camelus dromedarius*) abscess. *Veterinary World*, 12(6): 802–808.
- Fredotovic, Z., Šprung, M., Soldo, B., Ljubenkov, I., Budi'c-Leto, I., Bilušic, T., Vedrana, Cikeš-Culic, V. and Puizina, J. 2017. Chemical composition and biological activity of *Allium cepa* L. and *Allium cornutum* (Clementi ex Visiani 1842) methanolic extracts. *Molecules*, 22(448): 1–13.
- Furtado, A.A., Torres-Rêgo, M., Lima, M., Bitencourt, M., Estrela, A.B., Souza da Silva, N., da Silva Siqueira, E.M., Tomaz, J.C., Lopes, N.P., Silva-Júnior, A.A., Zucolotto, S.M. and Fernandes-Pedrosa, M.F. 2016. Aqueous extract from *Ipomoea asarifolia* (Convolvulaceae) leaves and its phenolic compounds have anti-inflammatory activity in murine models of edema, peritonitis and air-pouch inflammation. *Journal of Ethnopharmacology*, 192: 225–235.

- Gadanya, A.M. and Muhammad, S.U. 2018. Hypolipidemic effect of oral administration of aqueous leaf extract of *Senna occidentalis* in rats. *Nigerian Journal of Basic and Clinical Sciences*, 15(1): 68–72.
- Gbolade, A.A. 2009. Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria. *Journal of Ethnopharmacology*, 121: 135–139.
- Gezawa, I.D., Ugwu, E.T., Ezeani, I., Adeleye, O., Okpe, I. and Enamino, M. 2019. Anemia in patients with diabetic foot ulcer and its impact on disease outcome among Nigerians: Results from the MEDFUN study. *PLoS ONE*, 14(12): e0226226.
- Gothai, S., Arulselvan, P., Tan, W.S. and Fakurazi, S. 2016. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. *Journal of Intercultural Ethnopharmacology*, 5(1): 1–6.
- Haruna, A., Mann, A. and Ogbadoyi, E.O. 2017.
 Phytochemical composition and antitrypanosomal activity of leaf extract of *Leptadenia hastata* (Pers)
 Decne. *Bayero Journal of Pure and Applied Sciences*, 10(2): 292–299.
- Inngjerdinge, K., Sogn, C.N., Diallo, D., Pierre, P.M. and Smestad, B.P. 2004. An ethnopharmacological survey of plants used for wound healing in Dogonland, Mali, West Africa. *Journal of Ethnopharmacology*, 92: 233–244.
- International Diabetes Federation (IDF) 2019. IDF Diabetes Atlas, 9th Edition. *International Diabetes Federation, Brussels, Belgium.* pp. 1-176.
- Ito, N., Nihei, T., Kakuda, R., Yaoita, Y. and Kikuchi. M. 2006. Five new phenylethanoid glycosides from the whole plants of *Lamium purpureum* L. *Chemical and Pharmaceutical Bulletin*, 54(12): 1705–1708.
- Jain, S. and Patil, U.K. 2010. Phytochemical and pharmacological profile of *Cassia tora* Linn- an overview. *Indian Journal of Natural Products and Resources*, 1(10): 430–437.
- Kameni, P.M., Dzeufiet, D.P.D. and Kamtchouing P. 2017. A review of the pharmacological potential of the water lily *Nymphaea lotus*. *Modern Application of Bioequivalence and Biovailability*, 1(5): 1–3.
- Kankara, S.S., Ibrahim, M.H., Mustafa, M., Go, R. 2015. Ethnobotanical survey of medicinal plants used for traditional maternal healthcare in Katsina state, Nigeria. South African Journal of Botany, 97: 165– 175.

- Kankara, S.S., Sani, D., Mustafa, M., Ibrahim, M.H. and Go, R. 2017. Acacia nilotica pods' water extract enhances wound healing in Sprague-Dawley rats by alleviating oxidative stress and suppressing proinflammatory cytokines. *Nigerian Journal of Scientific Research*, 16(2): 202–210.
- Kwazo, H.A., Faruq, U.Z., Dangoggo, S.S., Malami, B.S. and Moronkola, D.O. 2015. Antimicrobial screening of crude water extract of the stem bark of *Ficus glumosa*. *Scientific Research and Essays*, 10(5): 177–183.
- Lakshmi, S.S., Chelladurai, G. and Suresh, B. 2016. In vitro studies on medicinal plants used against bacterial diabetic foot ulcer (BDFU) and urinary tract infected (UTI) causing pathogens. *Journal of Parasitic Diseases*, 40(3): 667–673.
- Lau, T.W., Chan, Y.W, Lau, C.P., Lau, K.M., Lau, C.B., Fung, K.P., Leung, P.C. and Ho, Y.Y. 2009. Radix astragali and Radix rehmanniae, the principal components of two antidiabetic foot ulcer herbal formulae, elicit viability-promoting effects on primary fibroblasts cultured from diabetic foot ulcer tissues. *Phytotherapy Research*, 23(6): 809–815.
- Mahanthesh, M.C., Manjappa, A.S., Sherikar, A.S., Disouza, J.I. and Shinde, M.V. 2019. Biological activities of *Cassia occidentalis* Linn: a systematic review. *World Journal of Pharmaceutical Research*, 8(9): 100–117.
- Mahibalan, S., Stephen, M., Nethran, R.T., Khan, R. and Begum, S. 2016. Dermal wound healing potency of single alkaloid (Betaine) versus standardized crude alkaloid enriched-ointment of *Evolvulus alsinoides*. *Pharmaceutical Biology*, 54(12): 2851–2856.
- Mamman, A. and Isa, M.A. 2013. Phytochemical and antibacterial activity of leave extracts of *Guiera senegalensis* Lam on selected species of Gram positive and Gram negative bacteria. *International Journal of Environment*, 2(1): 262–268.
- Mann, A., Yahaya, Y., Banso, A. and Ajayi, G.O. 2008. Phytochemical and antibacterial screening of *Anogeissus leiocarpus* against some microorganisms associated with infectious wounds. *African Journal* of *Microbiology Research*, 2: 60–62.
- Marrelli, M., Amodeo, V., Statti, G. and Conforti, F. 2018. Biological properties and bioactive components of *Allium cepa* L.: Focus on potential benefits in the treatment of obesity and related comorbidities. *Molecules*, 24(1): 119.

- Martin, G.J. 1995. Ethnobotany: A methods manual. Royal Botanic Gardens, Kew, UK. pp. 123-124.
- Mbiantcha, M., Khalid, R., Atsamo, D.A., Njoku, I.S., Mehreen, A., Ateufack, G., Hamza, D., Nana W.Y, Naeem, R.U. and Izhar, A. 2020. Antihypernociceptive effects of methanol extract of *Boswellia dalzielii* on STZ-induced diabetic neuropathic pain. *Advances in Traditional Medicine*, 20: 405–417.
- Mesa, L.E., Lutgen, P., Velez, I.D., Segura, A.M. and Robledo, S.M. 2015. *Artemisia annua* L., potential source of molecules with pharmacological activity in human diseases. *American Journal of Phytomedicine and Clinical Therapeutics*, 3(5): 436–450.
- Miaffo, D., Ntchapda, F., Guessom Kamgue, O., Talba Abba, M. and Kamanyi, A. 2020. Glucose-lowering potential of *Guiera senegalensis* roots in a diabetic rat model. *Avicenna Journal of Phytomedicine*, 10(6): 653–663.
- Mongalo, N.I., Mashel, S.S. and Makhafola, T.J. 2020. *Ziziphus mucronata* Willd. (Rhamnaceae): its botany, toxicity, phytochemistry and pharmacological activities. *Heliyon*, 6(4): e03708.
- Muhammad, H.I., Asmawi, M.Z. and Khan, N.A.K. 2016. A review on promising phytochemical, nutritional and glycemic control studies on Moringa oleifera Lam. in tropical and sub-tropical regions. *Asian Pacific Journal of Tropical Biomedicine*, 6(10): 896–902.
- Musara, C., Aladejana, E.B., Mudyiwa, S.M., and Karavina, C. 2020. Parkia biglobosa (Mimosaceae): Botany, uses, phytochemical properties and pharmacological potential. *Journal of Pharmacy and Nutrition Sciences*, 10: 101–115.
- Nadkarni, K.M. 2009. Indian Materia Medica. Vol 1. Popular Prakashan, *Bombay*, pp. 811–816.
- Nazifi, A.B, Danjuma, N.M, Olurishe, T.O. and Ya'u, J. 2017. Behavioural effects of methanol stem bark extract of *Boswellia dalzielii* Hutch (Burseraceae) in mice. *African Journal of Biomedical Research*, 20(1): 103–108.
- Negbenebor, H.E., Shehu, K., Mukhtar, M.F., Oiza, A.Z., Nura, S. and Fagwalaw, L.D. 2017. Ethno botanical survey of medicinal plants used by Hausa people in the management of diabetes mellitus in Kano metropolis, northern Nigeria. *European Journal of Medicinal Plants*, 18(2): 1–10.

- Nepolean, P., Anitha, J. and Renitta, R.E. 2009. Isolation, analysis and identification of phytochemicals of antimicrobial activity of *Moringa oleifera* Lam. *Current Biotica*, 3(1): 33–39.
- Neuwinger, H.D. 1996. African ethnobotany poisons and drugs: chemistry, pharmacology, toxicology. Chapman & Hall, London.
- Nongmaithem, M., Bawa, A.P.S., Pithwa, A.K., Bhatia, S.K., Singh, G. and Gooptu, S. 2016. A study of risk factors and foot care behavior among diabetics. *Journal of Family Medicine and Primary Care*, 5(2): 399–403.
- Noté, O.P., Messi, L.M., Mbing, J.N., Azouaou, S.A., Sarr, M., Guillaume, D., Muller, C.D., Pegnyemb, D.E. and Lobstein, A. 2017. Pro-apoptotic activity of acylated triterpenoid saponins from the stem bark of *Albizia chevalieri* Harms. *Phytochemistry Letters*, 22: 95–101.
- Ntchapda, F., Abakar, D., Kom, B., Nana, P., Hamadjida, A. and Dim, T. 2014. Acute and subchronic oral toxicity assessment of the aqueous extract leaves of *Ficus glumosa* Del. (Moraceae) in rodents. *Journal of Intercultural Ethnopharmacology*, 3(4): 206–213.
- Nwafor, F.I., Tchimene, M.K., Onyekere, P.F., Nweze, O.N. and Orabueze, I.C. 2018. Ethnobiological study of traditional medicine practices for the treatment of chronic leg ulcer in south eastern Nigeria. *Indian Journal of Traditional Knowledge*, 17(1): 34–42.
- Ogunkunle, A.T.J. and Ladejobi, T.A. 2020. Ethnobotanical and phytochemical studies on some species of Senna in Nigeria. *African Journal of Biotechnology*, 5(21): 2020–2023.
- Oguntibeju, O.O. 2019. Medicinal plants and their effects on diabetic wound healing, *Veterinary World*, 12(5): 653–663.
- Ohemu, T.L., Agunu, A., Olotu, P.N., Ajima, U., Dafam, D.G. and Azila J.J. 2014. Ethnobotanical survey of medicinal plants used in the traditional treatment of viral infections in Jos, Plateau State, Nigeria. *International Journal of Medicinal and Aromatic Plants*, 4(2): 74–81.
- Orlando, G., Ferrante, C., Zengin, G., Sinan, I., Bene, K., Diuzheva, A., Jekő, J., Cziáky, Z., Di Simone, S., Recinella, L., Chiavaroli, A., Leone, S., Brunetti, L., Picot-Allain, C.M.N., Mahomoodally, M.F. and Menghini, L. 2019. Qualitative chemical characterization and multidirectional biological

investigation of leaves and bark extracts of *Anogeissus leiocarpus* (DC.) Guill. & Perr. (Combretaceae). *Antioxidants*, 8(343): 1–29.

- Oscar, N.D.Y., Desire, S., Olivier, N.E., Mala Opono M.T.G. and Barthelemy, N. 2018. Fatty alcohols isolated from Prosopis africana and evaluation of antibacterial and antituberculosis activities. *Journal* of Diseases and Medicinal Plants, 4(5): 128–132.
- Palejkar, C.J., Palejkar, J.H., Patel, A.J. and Patel, M.A. 2012. A plant review on *Ziziphus mauritiana*. *International Journal of Universal Pharmacy and Life Sciences*, 2(2): 202–211.
- Patil, D., Roy, S., Dahake, R., Rajopadhye, S., Kothari, S., Deshmukh, R. and Chowdhary, A. 2013. Evaluation of *Jatropha curcas* Linn. leaf extracts for its cytotoxicity and potential to inhibit hemagglutinin protein of influenza virus. *Indian Journal of Virology*, 24(2): 220–226.
- Picerno, P., Mencherini, T., Della, R., Loggia Meloni, M., Sanogo, R. and Aquino, R.P. 2006. An extract of *Lannea microcarpa*: composition, activity and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. *Journal of Pharmacy and Pharmacology*, 58: 981–988.
- Prashar, A., Locke, I.C. and Evans, C.S. 2006. Cytotoxicity of clove (*Syzygium aromaticum*) oil and its major components to human skin cells. *Cell Proliferation*, 39(4): 241–248.
- Rajan, D.S., Rajkumar, M., Kumarappan, C.T. and Kumar, K.L.S. 2013. Wound healing activity of an herbal ointment containing the leaf extract of *Ziziphus mauritiana* Lam. *African Journal of Pharmacy and Pharmacology*, 7(3): 98–103.
- Sabo, V.A. and Knezevic, P. 2019. Antimicrobial activity of *Eucalyptus camaldulensis* Dehn. plant extracts and essential oils: A review. *Industrial Crops and Products*, 132: 413–429.
- Sakande, J., Rouet-benzineb, P., Devaud, H., Nikiema, J.B., Lompo, M., Nacoulma, O.G., Guissou, I.P. and Bado, A. 2011. Dichloromethane-methanol extract from *Borassus aethiopum* Mart. (Arecaceae) induces apoptosis of human colon cancer Ht-29 cells. *Pakistan Journal of Biological Sciences*, 14: 578– 583.
- Salihu, T., Olukunle, J.O., Adenubi, O.T., Mbaoji, C. and Zarma, M.H. 2018. Ethnomedicinal plant species commonly used to manage arthritis in North-West

Nigeria. South African Journal of Botany, 118: 33–43.

- Sanda, K.A., Sandabe, U.K., Auwal, M.S., Bulama, I., Bashir, T.M., Sanda, F.A. and Mairiga, A. 2013. Hypoglycemic and antidiabetic profile of the aqueous root extracts of Leptadenia hastata in albino rats. *Pakistan Journal of Biological Science*, 16(4): 190– 194.
- Sani, S.B., Aliyu, B.S., Haruna, M., Yahya, S.M., Mardiyya, A.Y., Ajingi, Y.S., Wada, L.H. and Abba, H. 2019. Local plants and diabetes management: folkloric practices in metropolitan Kano, Nigeria. *Bayero Journal of Pure and Applied Sciences*, 12(1): 268–273.
- Shekar, C., Nagarajappa, R., Singh, R. and Thakur, R. 2015. Antimicrobial efficacy of Acacia nilotica, Murraya koenigii L. Sprengel, Eucalyptus hybrid, and Psidium guajava on primary plaque colonizers: an in vitro comparison between hot and cold extraction process. Journal of Indian Society of Periodontology, 19(2): 174–179.
- Shinkafi, TS, Bello L, Hassan, SW and Ali, S. (2015). An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in Sokoto, Northwest Nigeria. *Journal of Ethnopharmacology*, 172(22): 91–99.
- Sobeh, M., Mahmoud, M.F., Hasan, R.A., Cheng, H., El-Shazly, A.M. and Wink, M. 2017. Senna singueana: Antioxidant, hepatoprotective, antiapoptotic properties and phytochemical profiling of a methanol bark extract. *Molecules*, 2(1502): 1– 15.
- Stephen, N.M., Wycliffe, A.M., Alex, M.K., Joseph, N.J.N. and Eliud, N.N.M. 2017. In vivo antidiabetic activity of aqueous and ethyl acetate leaf extract of *Senna singuena* (Delile) in alloxan induced diabetic mice. *The Journal of Phytopharmacology*, 6(2): 84– 92.
- Su, X., Liu, X., Wang, S., Li, B., Pan, T., Liu, D., Wang, F., Diao, Y. and Li, K. 2017. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) *Merr. in rats. Burns*, 43(4): 830– 838.
- Tanvir, E.M., Afroz, R., Karim, N., Mottalib, A., Hossain, I., Islam, A., Gan, S.H. and Khalil, I. 2015. Antioxidant and antibacterial activities of methanolic extract of BAU Kul (*Ziziphus mauritiana*), an improved variety of fruit from Bangladesh. *Journal* of Food Biochemistry, 39(2): 139–147.

- Tardio, J. and Pardo-de-Santayana, M., 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). *Economic Botany*, 62(1): 24–39.
- Telrandhe, U.B. and Uplanchiwar, V. 2013. Phytopharmacological Perspective of *Cadaba farinosa* Forsk. *American Journal of Phytomedicine and Clinical Therapeutics*, 1: 11–22.
- Teman, T. and Dillo, A. 2016. Ethnobotanical study of medicinal plants of Mirab-Badwacho district, Ethiopia. *Journal of Bioscience and Biotechnology*, 5(2): 151–158.
- Thakur, R. Jain, N., Pathak, R. and Sandhu, S.S. 2011. Practices in wound healing studies of plants. *Evidence-Based Complementary and Alternative Medicine*, 438056: 1–17.
- Tiwary, R., Tripathi, J.N. and Dwivedi, K.N. 2011. Effect of medicinal plants on wound healing in diabetics. *Biomedical and Pharmacology Journal*, 4(1): 189–194.
- Tor-Anyiin, T.A., Igoli, J.O., Anyam, J.V. and Anyam, J.N. Isolation and antimicrobial activity of sarracenin from root bark of Strychnos spinosa. *Journal of Chemical Society of Nigeria*, 40(1): 71–75.
- Tringali, C., Spatafora, C. and Longo, O.D. 2000. Bioactive constituents of the bark of *Parkia biglobosa*. *Fitoterapia*, 71(2): 118–125.
- Tugume, P., Kakudidi, K.E., Buyinza, M., Namaalwa, J., Kamatenesi, M., Mucunguzi, P. and Kalema, J., 2016. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve. *Journal of Ethnobiology and Ethnomedicine*, 12(5): 2–28.
- Tula, M.Y., Danchal, T.B., Iruolaje, F.O. and Onyeje, G.A. 2014. Studies on phytochemical constituents and antibacterial potentials of extracts of *Balanites aegyptiaca* (Del.) parts on antibiotic resistant bacterial isolates. *European Journal of Medicinal Plants*, 4(7): 854–864.
- Ugwu, E., Adeleye, O., Gezawa, I., Okpe, I., Enamino, M. and Ezeani, I. 2019. Burden of diabetic foot ulcer in Nigeria: current evidence from the multicenter evaluation of diabetic foot ulcer in Nigeria. *World Journal of Diabetes*, 10(3): 200–211.
- Ukwade, C.E., Ebuehi, O.A.T., Adisa, R.A., Singh, S.A. and Singh, R. 2020. Anti-proliferative activities of *Byrsocarpus coccineus* Schum. and Thonn. (Connaraceae) using ovarian cancer cell lines. *Journal of Ovarian Research*, 13: 83.

- Umair, M., Altaf, M. and Abbasi, A.M. 2017. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pakistan. PLoS ONE, 12(6): e0177912.
- Umar, Z.U., Moh'd, A. and Tanko, Y. 2013. Effects of ethanol leaf extract of Ficus glumosa on fasting blood glucose and serum lipid profile in diabetic rats. *Nigerian Journal of Physiological Sciences*, 28(1): 99–104.
- van de Venter, M., Roux, S., Bungu, L.C., Louw, J., Crouch, N.R., Grace, O.M., Maharaj, V., Pillay, P., Sewnarian, P., Bhagwandin, N. and Folb, P. 2008. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. *Journal of Ethnopharmacology*, 119(1): 81–86.
- Vergun, O.M., Grygorieva, O.V., Brindza, J., Shymanska, O.V., Rakhmetov, D.B., Seldackova, V.H., Korablova, O.A., Fishchenko, V.V. and Ivanisova E. 2019. Content of phenolic compounds in plant raw of *Cichorium intybus* L., *Lamium purpureum* L. and *Viscum album* L. *Plant Introduction*, 3: 87–96.
- Victor, Y.A.B., Boye, A. and Ayaba, S. 2013. Phytochemical Screening and assessment of wound healing activity of the leaves of *Anogeissus leiocarpus*. *European Journal of Experimental Biology*, 3(4): 18–25.
- Walsh, J.W., Hoffstad, O.J., Sullivan, M.O. and Margolis, D.J. 2016. Association of diabetic foot ulcer and death in a population-based cohort from the United Kingdom. *Diabetic Medicine*, 33(11): 1493– 1498.
- World Health Organization (WHO) 2013. World Health Organization strategy on traditional Medicine 2014-2023, Geneva, Switzerland .
- Yuan, H., Ma, Q., Ye, L. and Piao, G., 2016. The traditional medicine and modern medicine from natural products. *Molecules*, 21(5): 559.
- Zaruwa, M.Z., Manosroi, A., Akihisa, T., Manosroi, W., Rangdaeng, S. and Manosroi, J. 2013. Hypoglycemic activity of the Anisopus mannii N.E.Br. methanolic leaf extract in normal and alloxan-induced diabetic mice. Journal of Complementary and Integrative Medicine, 10(1): 37– 46.
- Zaruwa, M.Z., Manosroi, J., Akihisa, T. and Manosroi, A. 2018. Manosrin a new hypoglycaemic compound from Anisopus mannii N.E.Br. International Journal of Advanced Research and Publications, 2(8): 72–78.

Zerbo, A., Koudou, J., Ouédraogo, N., Ouédraogo, R. and Guissou, I.P. 2010. Antioxidant and antibacterial activities of *Piliostigma reticulatum* (DC.) Hochst extracts. *African Journal of Biotechnology*, 9(33): 5407–5411.