

Synthesis and dynamic ¹H NMR study of dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives

Malek Taher Maghsoodlou^a, Nourallah Hazeri^a, Sayyed Mostafa Habibi Khorassani^{*a}, Ghasem Marandi^b, Majid Moradian^c, and Vahideh Soleymani^a

^a Department of Chemistry, The University of Sistan and Balouchestan, P. O. Box 98135-674, Zahedan, Iran

^b Department of Chemistry, Faculty of Science, Payame Noor University of Khoy, Khoy, Iran

^cDepartment of Chemistry, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran

Abstract: The 1:1 adduct intermediate of alkyl or aryl isocyanides and dialkyl acetylenedicarboxylates were protonated by acetic acid to produce dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives and dynamic ¹H NMR effects were observed in these compounds. The calculated free-energy of activation ($\Delta G \neq$) for restricted rotation around the aryl-nitrogen single bonds in dimethyl-2-[*N*-acetyl-*N*-(2, 6-dimethyphenyl)carbamoyl]butandioate (**3d**) amounts to 58.2 ± 2 kJ.mol⁻¹ with first order rate constant (*k*=189.3 s⁻¹) at appropriate temperature.

Keywords: Isocyanides, Acetylenic esters, Acetic acid, Dynamic NMR, Dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives, The free-energy of activation.

Introduction

The development of simple synthetic routs for widely used organic compounds from readily available reagents is one of the major tasks in organic chemistry [1]. Multicomponent reactions (MCRs) play a key role in organic chemistry due to the fact that highly complex structures can be formed in a simple one-pot process [2]. The 1:1 adduct intermediate of isocyanides and acetylenic esters has a synthetic potential because it can be trapped by many functional groups such as aldehydes, carbonyls, proton source compounds and so on [3]. We wish to report a simple synthesis of dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives by reaction between alkyl or aryl isocyanides and acetylenic esters in the presence of acetic acid.

Results and discussion

The reaction of isocyanides **1** with dialky acetylenedicarboxylates **2** in the presence of acetic acid undergo a smooth 1:1:1 addition reaction in dichloromethane at ambient temperature, to produce dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl) carbamoyl] butandioate derivatives **3** in high yields (see Scheme **1**).

The structures of compounds **3a-f** were deduced from their IR, ¹H- and ¹³C-NMR spectra as well as Mass spectra. The mass spectrum of **3a** displayed the molecular ion peak at appropriate m/z value. The IR spectrum of compound **3a** showed strong absorption peak at carbonyl region (1726 and 1697 cm⁻¹) in agreement with proposed structure.

The ¹H NMR spectrum of compound **3a** exhibited four single sharp lines arising from acetyl (δ = 2.33 ppm), two methoxycarbonyl groups (δ = 3.69 and 3.77 ppm) and vinylic proton (δ = 6.54 ppm), respectively. Ten protons of cyclohexyl resonate at (δ = 1.91–2.19 ppm) and the methine CH resonate at (δ = 3.56 ppm) respectively. The ¹³C NMR spectrum of compound 3ashowed thirteen distinct resonances according to the dimethyl 2-[N-acetyl-N-(cyclohexyl)carbamoyl]butandioate structure. Other assignments of these compounds are given in experimental section. The ¹H- and ¹³C- NMR spectra of compounds **3b-f** are similar to those of **3a**, except for the esters and alkyl or aryl moieties, which exhibit characteristic signals with appropriate chemical shifts (see experimental section).

Although we have not established the mechanism of the reaction between the isocyanides and the acetylenic esters in the presence of acetic acid in experimental

^{*}Corresponding author. Tel/Fax: +98-541-2416586; E-Mail: *smhabibius@yahoo.com*

Scheme 1. Reaction between isocyanides and acetylenic esters in the presence of acetic acid.

Scheme 2. Proposed mechanism for preparation of dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives.

manner, a proposed mechanism is illustrated in Scheme 2.

On the basis of the well established chemistry of isocyanides [4-6], it is reasonable to assume that the compound **3** apparently results from initial addition of the isocyanide to the acetylenic ester and subsequent protonation of the 1:1 adduct **4** by acetic acid, followed by attack of the acetate anion on the positively charged ion **5** to form imidoyl carboxylate **6**, which undergoes rearrangement [7-8] under the reaction condition employed, to produce the compound **3** (Scheme **2**).

We also observed dynamic NMR effects on ¹H NMR spectrum of compound **3d**. The ¹H NMR spectrum of **3d** in CDCl₃ at ambient temperature displayed four single resonances due to the COMe (δ = 1.87 ppm), ArMe₂ (δ = 2.36 ppm) and methoxy (δ = 3.76 and 3.86 ppm) protons. At about 10 °C, the resonances arising from the ArMe₂ protons were appreciably broadened when compared to the corresponding signals at room temperature, whereas the methoxy group resonances remained unchanged. The ArMe₂ protons coalescences near 17 °C and appeared as a fairly symmetrical line at -30 °C. The variable temperature spectra allowed calculating the free-energy barrier for the *N*-aryl bond rotation [9] in **3d** (Scheme **3**).

Scheme 3. Rotation around aryl-nitrogen single bond.

Using the expression $k=\pi\Delta v/\sqrt{2}$, first order rate constant ($k= 189.3 \text{ s}^{-1}$) was calculated for the N-aryl bond rotation in **3d** at 15 °C (see Table 1). Application of the absolute rate theory with a transmission coefficient of **3d** gave free-energy activation (ΔG^{\neq}) of 58.2 ± 2 kJ.mol⁻¹, where all known sources of errors were estimated and included [10]. The experimental data available were not suitable for obtaining meaningful values of ΔH^{\neq} and ΔS^{\neq} , even though the errors in ΔG^{\neq} were not large [11]. It is necessary to mention that, measurement of different chemical shift in a series of low variable spectra was too less so that changes in first order rate constant and also the freeenergy of activation are negligible in comparison with the results have been previously mentioned for -30 C [12].

Table 1. Selected proton chemical shifts (at 500.1 MHz, in ppm, Me_4Si) and calculated activation parameters (kJ.mol⁻¹) of **3d** in CDCl₃ solvent.

Compd	Temp (°C)	Resonance ArMe ₂	∆v (Hz)	$k (s^{-1})$	Т _С (К)	ΔG^{\neq} (kJ. mol ⁻¹)
3d	-30 25	2.25 2.42	85	189.3	290	58.2±2
		2.36				

Experimental

Melting points and IR spectra of all compounds were measured on an Electrothermal 9100 apparatus and a JASCO FT-IR spectrometer respectively. Also, the ¹H- and ¹³C-NMR spectra were obtained from a BRUKER DRX-500 AVANCE instrument with CDC13 as a solvent at 500.1 and 125.7 MHz respectively. In addition, the mass spectra were recorded on a Shimadzu GCMS-QP5050A mass spectrometer operating at an ionization potential of 70 eV and elemental analysis of C, H and N were performed using a Heraeus CHN-O-rapid analyzer. Dialkyl acetylenedicarboxylates, Isocyanides and acetic acid were purchased from (Merk and Fluka), and used without further purifications.

General procedure (exemplified by 3a)

To a magnetically stirred solution of acetic acid (1 mmol, 0.06 g) and dimethyl acetylenedicarboxylate (1 mmol, 0.14 g) in 15 mL CH₂Cl₂ was added dropwise a solution of cyclohexyl isocyanide (1 mmol, 0.11g) in 5 mL CH₂Cl₂ at -5 °C over 10 min. Then the reaction mixture was heated to 38 °C for 4 days. After this time the solvent was removed under reduced pressure and the residues was washed with cold diethyl ether/n-hexane (3:1) as eluent.

Dimethyl-2-[N-acetyl-N-(cyclohexyl)carbamoyl]butandioate (3a)

Orange liquid oil, yield (94%). IR (in CCl₄) (v_{max} , cm⁻¹): 1726, 1697 (C=O), 1658 (C=C). ¹H NMR (500 MHz, CDCl₃): 1.19-2.19 (10 H, m, 5 CH₂ of cyclohexyl), 2.33 (3 H, s, COCH₃), 3.56 (1 H, m, NCH), 3.69 and 3.77 (6 H, 2s, 2 CO₂Me), 6.54 (1 H, s, C=CH). ¹³C NMR (125.7 MHz, CDCl₃): 25.09, 25.20 and 29.04 (5 C of cyclohexyl), 26.55 (COCH₃), 52.18 and 52.93 (2 CO₂Me), 59.88 (NCH), 122.48 (C=CH), 143.87 (C=CH), 163.11 (NCOC=CH), 164.87 and 166.53 (2 CO₂Me), 174.06 (NCOCH₃). MS (EI, 70 eV): m/z (%) = 311 (M⁺, 7), 2.70 (13), 252 (68), 171 (100), 140 (44), 98 (43), 59 (45), 55 (50). Anal. Calcd for C₁₅H₂₁NO₆ (311.33): C, 57.88; H, 6.08; N, 4.50. Found: C, 57.94; H, 6.54; N, 4.42.

Dimethyl-2-[N-acetyl-N-(benzyl)carbamoyl]butandioate (3b)

Orange oil, yield (92%). IR (in CCl₄) (v_{max} , cm⁻¹): 1725, 1694 (C=O), 1654 (C=C). ¹H NMR (500 MHz, CDCl₃): 2.33 (3 H, s, COCH₃), 3.74 and 3.80 (6 H, 2s, 2 CO₂*Me*), 4.80 (2 H, br, ArC*H*₂), 6.69 (1 H, s, C=CH), 7.24-7.38 (5 H, m, ArH). ¹³C NMR (125.7 MHz, CDCl₃): 24.53 (COCH₃), 47.60 (ArCH₂N), 52.32 and 52.97 (2 CO₂*Me*), 123.37 (*C*=CH), 126.51, 127.61, 128.89 and 136.27 (6 C, Ar), 143.96 (*C*=CH), 162.85 (NCOC=CH), 165.01 and 166.71 (2 CO₂Me), 173.36 (NCOCH₃). MS (EI, 70 eV): *m/z* (%) = 319 (M⁺, 1), 260 (17), 246 (13), 171 (26), 146 (53), 106 (100), 91 (93), 59 (14). Anal. Calcd for C₁₆H₁₇NO₆ (319.31): C, 60.18; H, 5.37; N, 4.39. Found: C, 60.23; H, 5.41; N, 4.32.

Di-tert-butyl-2-[N-acetyl-N-(benzyl)carbamoyl]butandioate (3c)

Brown liquid oil, yield (95%). IR (in CCl₄) (v_{max} , cm⁻¹): 1717, 1710 (C=O), 1653 (C=C). ¹H NMR (500 MHz, CDCl₃): 1.46 and 1.51 (18 H, 2s, 2 CO₂CMe₃), 2.24 (3 H, s, COCH₃), 4.72 (2 H, br, ArCH₂), 6.56 (1 H, s, C=CH), 7.18-7.39 (5 H, m, ArH). ¹³C NMR

(125.7 MHz, CDCl₃): 24.68 (COCH₃), 27.92 and 27.97 (2 CO₂*CMe*₃), 47.64 (Ar*C*H₂N), 82.10 and 83.11 (2 CO₂*CMe*₃), 126.75 (*C*=CH), 127.50, 128.76 and 136.27 (6 C, Ar), 150.98 (*C*=CH), 161.52 (NCOC=CH), 163.80 and 167.34 (2 *C*O₂*CMe*₃), 172.92 (NCOCH₃). MS (EI, 70 eV): m/z (%) = 403 (M⁺, 2), 385 (7), 302 (5), 231 (14), 160 (7), 148 (23), 106 (63), 91 (100), 57 (76). Anal. Calcd for C₂₂H₂₉NO₆ (403.47): C, 65.49; H, 7.24; N, 3.47. Found: C, 65.61; H, 7.23; N, 3.40.

Dimethyl-2-[N-acetyl-N-(2,6dimethyphenyl)carbamoyl]butandioate (3d)

White powder, yield. (92%). mp 116-118 °C; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$: 1725, 1711 (C=O), 1655 (C=C). ¹H NMR (500 MHz, CDCl₃): 1.87 (3 H, s, COCH₃), 2.36 (6 H, s, ArMe₂), 3.76 and 3.86 (6 H, 2s, 2 CO₂Me), 6.81 (1 H, s, C=CH), 7.19 (2 H, d, J= 7.5 Hz, ArH), 7.26 (1 H, t, J=7.5 Hz, ArH). ¹³C NMR (125.7 MHz, CDCl₃): 17.89 (ArMe₂), 24.05 (COCH₃), 52.26 and 52.74 (2 CO₂Me), 125.12 (C=CH), 129.16, 129.41, 135.48 and 136.84 (6 C, Ar), 143.38 (C=CH), 163.17 (NCOC=CH), 164.49 and 164.69 (2 CO₂CMe₃), 173.07 (NCOCH₃). MS (EI, 70 eV): m/z (%) = 333 (M⁺, 27), 302 (13), 274 (73), 216 (29), 200 (100), 146 (73), 120 (42), 105 (47), 91 (44) 59 (87). Anal. Calcd for C₁₇H₁₉NO₆ (333.34): C, 61.25; H, 5.75; N, 4.20. Found: C, 61.48; H, 5.76; N, 4.11.

Diethyl-2-[N-acetyl-N-(2,6-

dimethyphenyl)carbamoyl]butandioate (3e)

White powder, yield (93%). mp 68-70 °C; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$: 1719, 1695 (C=O), 1648 (C=C). ¹H NMR (500 MHz, CDCl₃): 1.28 and 1.34 (6 H, 2t, J= 7.1 Hz, CO₂CH₂CH₃), 1.86 (3 H, s, COCH₃), 2.37 (6 H, s, ArMe₂), 4.21 and 4.34 (4 H, 2q, J= 7.1 Hz, 2 CO₂CH₂CH₃), 6.81 (1 H, s, C=CH), 7.18 (2 H, d, J= 7.4 Hz, ArH), 7.25 (1 H, t, J= 7.4 Hz, ArH). ¹³C NMR (125.7 MHz, CDCl₃): 14.05 and 14.12 (2 OCH₂CH₃) 18.04 (ArMe₂), 24.05 (COCH₃), 61.26 and 62.00 (2 OCH₂CH₃), 125.61 (C=CH), 129.10, 129.35, 135.56 and 136.91 (6 C, Ar), 143.57 (C=CH), 162.80 (NCOC=CH), 164.31 and 164.65 (2 CO₂Et), 172.95 (NCOCH₃). MS (EI, 70 eV): m/z (%) = 361 (M⁺, 20), 319 (10), 288 (60), 274 (29), 246 (47), 244 (43), 200 (54), 171 (27), 143 (100). Anal. Calcd for C₁₉H₂₃NO₆ (361.39): C, 63.15; H, 6.41; N, 3.88. Found: C, 63.27; H, 6.30; N, 3.95.

Di-tert-butyl-2-[N-acetyl-N-(2,6-dimethyphenyl) carbamoyl]butandioate (3f)

Pale white powder, yield (90%). mp 115-117 °C; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$: 1723, 1694 (C=O), 1638 (C=C). ¹H NMR (500 MHz, CDCl₃): 1.46 and 1.54 (18 H, 2s, 2 CO₂CMe₃), 1.85 (3 H, s, COCH₃), 2.36 (6 H, s, ArMe₂), 6.63 (1 H. s. C=CH), 7.16 (2 H. d. J= 7.5 Hz. ArH), 7.24 (1 H, t, J= 7.5 Hz, ArH). ¹³C NMR (125.7 MHz, CDCl₃): 18.21 (ArMe₂), 24.13 (COCH₃), 27.99 and 28.05 (2 CO₂CMe₃), 81.81 and 83.03 (2 CO₂CMe₃), 126.86 (C=CH), 128.97, 129.18, 135.73 and 137.10 (6 C, Ar), 144.15 (C=CH), 162.09 (NCOC=CH), 163.77 and 165.11 (2 CO₂CMe₃), 172.62 (NCOCH₃). MS (EI, 70 eV): m/z (%) = 418 (M⁺+1, 8), 417 (M⁺, 23), 344 (7), 316 (42), 260 (100), 200 (17), 163 (46), 146 (33), 105 (12), 91 (5), 77 (9), 57 (71). Anal. Calcd for C₂₃H₃₁NO₆ (417.50): C, 66.17; H, 7.48; N, 3.35. Found: C, 66.25; H, 7.57; N, 3.28.

References

- [1] Laszlo, P. In Organic Reactions: Simplicity and Logic, (Wiley, New York), 1995.
- [2] Timmons, C.; Kattuboina, A.; Banerjee, S.; Li, G. *Tetrahedron*, 2006, 62, 7151.
- [3] (a) Nair, V.; Vinod, A. U.; Somarajan-Nair, J.; Sreekanth, A. R.; Rath, N. P. Tetrahedron Lett, 2000, 41, 6675. (b) Nair, V.; Vinod, A. U.; Abhilash, N.; Menon, R. S.; Santhi, V.; Varma, R. L.; Viji, S.; Mathew, S.; Srinivas, R.; Tetrahedron, 2003, 59, 10279. (c) Esmaeili, A. A.; Darbaniani, M. Tetrahedron, 2003, 59, 5545. (d) Yavari, I.; Hazeri, N.; Maghsoodlou, M. T.; Zabarjad-Shiraz, N. Monatsh Chem, 2001, 132, 683. (e) Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Hazeri, N.; Marandi, G.; Bijanzadeh, H. R.; J. Chem. Res, 2006, 73. (f) Hazeri, N.; Habibi-Khorassani, S. M.; Maghsoodlou, M. T.; Marandi, G.; Nassiri, M.; Ghulame-Shahzadeh, A. J. Chem. Res. 2006, 185. (g) Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorassani, S. M.; Marandi, G.; Nassiri, M.; Synth Commun, 2005, 35, 2771. (h) Hazeri, N.; Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Marandi, G.; Khandan-Barani, K.; Ziyaadini, M.; Aminkhani, A.; Arkivoc, 2007, (i), 173. (i) Alizadeh, A.; Rostamnia, S.; Zhu, L. G. Tetrahedron, 2006, 62, 5641. (j) Alizadeh, A.; Rostamnia, S.; Esmaili, A. A.; Synthesis, 2007, 5, 709. (k) Alizadeh, A.; Rostamnia, S.; Hu, M. L. Synthesis, 2006, 10, 1592.
- [4] Ugi, I. Isonitrile Chemistry, (Academic Press, London), 1971.
- [5] Ugi I, Angew. Chem., Int. Ed. Engl, 1982, 21, 810.
- [6] Dömling, A.; Ugi, I. Angew. Chem., Int. Ed, 2000, 39, 3168.

Conclusions

In conclusion, we have prepared novel dialkyl-2-[*N*-acetyl-*N*-(alkyl or aryl)carbamoyl]butandioate derivatives via one-pot reaction between isocyanides and acetic acid in the presence of dialkyl acetylenedicarboxylates. The present reaction is performed under neutral conditions and starting materials and reagent can be reacted without any prior activation.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of the University of Sistan & Balouchestan.

- [7] Baker, R. H.; Stanonis, D. J. Am. Chem. Soc, 1951, 73, 699.
- [8] Bock, H.; Ugi, I. J. Prakt. Chem, 1997, 339, 835.
- [9] Cervinka, O. *The Chemistry of Enamines*, Edited by Z Roppoport, (Wiley, New York), 1994, Part.1, p. 219.
- [10] Gunther, H. NMR Spectroscopy, 2^{ed} ed, (Wiley, New York), 1995, Capter 9.
- [11] Anet, F. A. L.; Anet, R. Dynamic Nuclear Maghnetic Resonance Spectroscopy, Edited by Cotton, F. A.; Jackman, L. M. (Academic Press, New York), 1975, Chapter 8.
- [12] Oki, M. Application of Dynamic NMR Spectroscopy to Organic Chemistry, Edited by (VCH publishers), 1985.