

Green synthesis of lactone derivatives in N-formylmorpholine as green solvent

Narges Ghasemi*

National Petrochemical Company (NPC), petrochemical Research and Technology Company, Arak Center, Iran

Received: November 2017; Revised: December 2018; January 2018

Abstract: The reaction between dimethyl acetylenedicarboxylate and various OH-acids in N-formylmorpholine leads to butyrolactone derivatives in nearly good yields. The present protocol offers the advantages of clean reaction, short reaction time, high yield, easy purification and affordability of the catalyst.

Keywords: Butyrolactone, 8-Hydroxyquinoline, Cathechol, Dialkyl acetylenedicarboxylates.

Introduction

Green chemistry techniques continue to grow in importance, and alternative processes are developed with the aim to conserve resources and reduce costs [1-3]. A major challenge in modern chemistry is the design of highly efficient chemical reactions with the minimum number of synthetic steps and short reaction times. Butyrolactones are an important structure unit in natural products and intermediates in organic synthesis [4, 5]. There has been considerable work on the synthesis of these compounds due to the discovery of many naturally occurring cytotoxic or antitumor agents. Although this ring system has been the objective of synthesic projects in a number of laboratories, the number of basically different approaches is not large [6-9].

Results and discussion

We now report a synthesis of butyrolactone derivatives **2** through the reaction of dimethyl acetylenedicarboxylate (DMAD) with phenols in *N*-formylmorpholine.

*Corresponding author. Tel.: +98 9188616658; E-mail: naghasemi.16@gmail.com.

Our results are summarized in Table 1. The reaction of phenol (1a) with DMAD in N-formylmorpholine at room temperature leads to the butyrolactone derivative 2a in 93% yield (Table 1). No other compound was obtained from the residue by column chromatography. The structure of the product was deduced from its elemental analyses and its IR, ¹H NMR, ¹³C NMR, and mass spectral data. The ¹H NMR spectrum of 2a exhibited two singlets identified as methoxy ($\delta = 3.72$ ppm) and olefinic ($\delta = 7.01$ ppm) protons along with multiplets ($\delta = 6.65, 7.23, 7.31, \text{ and } 7.48 \text{ ppm}$) for the aromatic protons. The ¹³C NMR spectrum of 2a showed eleven distinct resonances in agreement with the proposed structure. Also, The ¹H NMR spectrum of **2d** exhibited two singlets identified as methoxy ($\delta =$ 3.88 ppm) and olefinic ($\delta = 6.67$ ppm) protons along with multiplets ($\delta = 7.27-8.46$ ppm) for the aromatic protons. The OH proton resonance appears at $\delta = 9.34$ ppm. The ¹³C NMR spectrum of **2d** showed 15 distinct resonances in agreement with the proposed structure.

A possible mechanism for the formation of **2a** is proposed in Scheme **1**. It is reasonable to assume that **2a** results from initial addition of NFM as green solvent to the acetylenic ester and subsequent

protonation of the 1,3-dipolar intermediate 3 by 1a. Then, the positively charged ion 4 might be attacked by the conjugated base of the OH-acid to produce the nitrogen ylide 6, which undergoes proton-transfer reaction to produce 7. The 1,3-dipolar ion 7 is

converted to **8** by elimination of NFM. The product **2a** is formed by intramolecular lactonization of **8**. Similar mechanism can be proposed for the formation of **2b**-**2e**.

OH
$$CO_2Me$$
 NFM $Et_2O, 3 h$ CO_2Me CO_2Me CO_2Me

Table 1: Reaction of DMAD with phenols *N*-formylmorpholine.

	Entry Starting materials		Product	roduct Yield (%)	
1	OH la		2	O =CHCO ₂ Me	
2	1b	ОН	21	CHCO ₂ Me	
3	16	ОН	MeO ₂ CH	O 90	
4	HO 1d	ОН	HO 2d	O CHCO ₂ Me	
5	N le	ОН	N 2e	CHCO ₂ Me	

Scheme1: Proposed mechanism for formation of 2

Experimental section

Typical procedure for the synthesis of 2a: To a stirred solution of 1a (0.19 g, 2 mmol) and DMAD (0.28 g, 2 mmol) in 10 mL dry ether was added NFM (5 mL) as green solvent at room temperature. The reaction mixture was then stirred for 3 h. The solvent was removed under reduced pressure and the residue was separated by silica gel column chromatography (Merck 230-400 mesh) using n-hexane-EtOAc (4:1) as eluent to give 2a.

Yellow oil; yield 0.38 g, 93%. IR (KBr) (v_{max}/cm^{-1}): 1735 and 1650 (C=O). ¹H NMR (500 MHz, CDCl₃): δ = 3.72 (3 H, s, OMe), 6.65 (1 H, d, ${}^{3}J_{HH}$ = 7.9 Hz, CH), 7.01 (1 H, s, CH), 7.23 (1 H, dd, ${}^{3}J_{HH}$ = 7.9 Hz, ${}^{3}J_{HH}$ = 7.5 Hz, CH), 7.31(1 H, dd, ${}^{3}J_{HH}$ = 7.8 Hz, ${}^{3}J_{HH}$ = 7.5 Hz, CH), 7.48 (1 H, d, ${}^{3}J_{HH}$ = 7.8 Hz, CH) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = 52.6 (OCH₃), 111.2 (CH), 122.1 (CH), 123.1 (CH), 123.5 (C), 124.3 (CH), 130.6 (CH), 138.2 (C), 153.5 (C), 165.3 (C=O), 166.5 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 204 (M⁺, 12), 189 (17), 160 (47), 145 (73), 144 (36), 132 (100), 91 (14), 76 (68), 59 (42). Anal. Calcd for C₁₁H₈O₄ (204.2): C, 64.71; H, 3.95%. Found: C, 65.18; H, 3.99%.

Compound 2b: Brown crystals, mp 176-178 °C, yield 0.48 g, 94%. IR (KBr) (v_{max}/cm^{-1}) : 1715 and 1616 (C=O). ¹H NMR (500 MHz, CDCl₃): $\delta = 4.02$ (3 H, s, OMe), 6.94 (1 H, s, CH), 7.59 (1 H, dd, ${}^{3}J_{HH} = 7.6$ Hz, $^{3}J_{HH} = 6.9 \text{ Hz}, \text{CH}$), 7.62 (1 H, dd, $^{3}J_{HH} = 7.6 \text{ Hz}, ^{3}J_{HH}$ = 5.1 Hz CH), 7.63 (1 H, d, ${}^{3}J_{HH}$ = 5.1 Hz, CH), 7.81 $(1 \text{ H}, \text{ d}, {}^{3}J_{HH} = 6.3 \text{ Hz}, \text{ CH}), 8.10 (1 \text{ H}, \text{ d}, {}^{3}J_{HH} = 6.9)$ Hz, CH), 8.46 (1 H, d, ${}^{3}J_{HH} = 6.3$ Hz, CH) ppm. ${}^{13}C$ NMR (125.7 MHz, CDCl₃): $\delta = 53.2$ (OCH₃), 111.4 (CH), 118.2 (C), 121.7 (CH), 122.5 (CH), 122.9 (C), 124.5 (CH), 127.2 (CH), 127.6 (CH), 129.2 (CH), 134.8 (C), 143.2 (C), 151.7 (C-O), 159.9 (C=O), 164.5 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 254 (M⁺, 5), 251 (22), 223 (100), 195 (38), 135 (56), 113 (84), 109 (54), 55 (78). Anal. Calcd for C₁₅H₁₀O₄ (254.2): C, 70.86; H, 3.96%. Found: C, 70.40; H, 3.81%.

Compound **2c**: Green powder, mp 113-115 °C, yield 0.46 g, 90%. IR (KBr) (v_{max}/cm^{-1}): 1724 and 1620 (C=O). ¹H NMR (500 MHz, CDCl₃): δ = 4.06 (3 H, s, OMe), 6.59 (1 H, s, CH), 7.46 (1 H, d, ³ J_{HH} = 8.1 Hz, CH), 7.55 (1H, dd, ³ J_{HH} = 7.2 Hz, ³ J_{HH} = 6.1 Hz, CH), 7.64 (1 H, dd, ³ J_{HH} = 7.2 Hz, ³ J_{HH} = 8.1 Hz, CH), 7.77 (1 H, d, ³ J_{HH} = 8.4 Hz, CH), 7.92 (1 H, d, ³ J_{HH} = 6.1 Hz, CH), 8.02 (1 H, d, ³ J_{HH} = 8.4 Hz, CH) ppm. ¹³C

NMR (125.7 MHz, CDCl₃): $\delta = 53.5$ (OCH₃), 110.1 (CH), 115.5 (CH), 117.3 (CH), 123.3 (C), 126.1 (CH), 127.9 (CH), 128.1 (CH), 129.4 (C), 130.9 (C), 134.6 (CH), 145.9 (C), 154.9 (C), 159.5 (C=O), 167.8 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 254 (M⁺, 10), 251 (45), 223 (100), 135 (50), 113 (84), 109 (65), 55 (75). Anal. Calcd for C₁₅H₁₀O₄ (254.2): C, 70.86; H, 3.96%. Found: C, 70.39; H, 3.82%.

Compound **2d**: Orange powder, mp 187-189 °C, yield 0.46 g, 85%. IR (KBr) (v_{max}/cm^{-1}): 3435 (OH), 1712 and 1617 (C=O). ¹H NMR (500 MHz, CDCl₃): δ = 3.89 (3 H, s, OMe), 6.67 (1 H, s, CH), 7.27 (1 H, d, ${}^4J_{HH}$ = 3.2 Hz, CH), 7.29 (1 H, dd, ${}^3J_{HH}$ = 8.7 Hz, ${}^4J_{HH}$ = 3.2 Hz, CH), 7.50 (1 H, d, ${}^3J_{HH}$ = 8.5 Hz, CH), 7.96 (1 H, d, ${}^3J_{HH}$ = 8.7 Hz, CH), 8.45 (1 H, d, ${}^3J_{HH}$ = 8.5 Hz, CH), 9.34 (1 H, s, OH). ¹³C NMR (125.7 MHz, CDCl₃): δ = 52.6 (OCH₃), 111.3 (CH), 114.2 (C), 114.4 (CH), 120.5 (CH), 121.9 (C), 123.0 (CH), 124.7 (CH), 124.9 (CH), 124.9 (C), 134.9 (C), 139.7 (C), 151.7 (C), 159.9 (C=O), 164.4 (C=O). MS (EI, 70 eV): m/z (%) = 270 (M⁺, 20), 242 (100), 239 (26), 211 (78), 155 (100), 126 (42), 77 (26). Anal. Calcd for C₁₅H₁₀O₅ (270.2): C, 66.67; H, 3.73%. Found: C, 66.91; H, 3.65%.

Compound **2e**: Pale yellow crystals, mp 155-157 °C, yield 0.44 g, 86%. IR (KBr) (v_{max}/cm^{-1}): 1714 and 1619 (C=O). ¹H NMR (500 MHz, CDCl₃): δ = 3.91 (3 H, s, OMe), 7.2 (1 H, s, CH), 7.35 (1 H, d, $^3J_{HH}$ = 8.5 Hz, CH), 7.45 (1 H, dd, $^3J_{HH}$ = 8.5 Hz, CH), 8.15 (1 H, d, $^3J_{HH}$ = 7.2 Hz, CH), 8.15 (1 H, d, $^3J_{HH}$ = 6.7 Hz, CH). 8.78 (1 H, d, $^3J_{HH}$ = 7.2 Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): δ = 52.8 (OCH₃), 112.7 (CH), 116.9 (C), 117.6 (CH), 122.1 (CH), 127.9 (C), 129.4 (C), 136.1 (CH), 137.95 (C), 148.2 (CH), 148.2 (CH), 150.4 (C), 159.5 (C=O), 164.4 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 255 (M⁺, 5), 224 (100), 195 (45), 128 (65), 109 (54), 77 (24), 59 (78), 31 (52). Anal. Calcd for C₁₄H₉NO₄ (255.2): C, 65.88; H, 3.55%. Found: C, 65.50; H, 3.46%.

Conclusion

In summary, the reaction between DMAD and phenols *N*-formylmorpholine leads to butyrolactone derivatives in excellent yields. The presented one-pot reaction carries the advantage that not only is the reaction performed under neutral conditions, but the substances can be mixed without any activation or modification.

References

[1] Li, C. J.; Chan, T. H. Comprehensive Organic Reactions in Aqueous Media; John Wiley & Sons, **2007**.

- [2] Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
- [3] Breslow, R. Acc. Chem. Res. 1991, 24, 159.
- [4] Grieco, P. A. Synthesis 1975, 67.
- [5] Gammill, R. B.; Wilson, C. A.; Bryson, T. A. *Synth. Commun.* **1975**, *5*, 245.
- [6] Newaz, S. S. Aldrichemica Acta 1977, 10, 64.
- [7] Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. **1985**, 24, 94.
- [8] Petragnani, N.; Ferraz, H. M. C.; Silva, G. V. J. *Synthesis* **1986**, 157.
- [9] Sarma, J.; Sharma, R. P. Heterocycles 1986, 24, 441.