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A R T I C L E  I N F O  A B S T R A C T 

Systems of simulations linear equations play major role in various areas such as 

mathematics, statistics, and social sciences. Since in many applications, at least 

some of the system’s parameters and measurements are represented by fuzzy 

rather than crisp numbers, therefore, it is important to develop mathematical 

models and numerical procedures that would appropriately treat general fuzzy 

linear systems and solve them. In this paper, a new method based on fuzzy 

operations approach for solving Fuzzy Linear System (FLS) is introduced. The 

related theorems are proved in details. Finally, the proposed method is 

illustrated by solving two numerical examples. 
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1. Introduction 

There are many linear equation systems in many areas of science and engineering. In the linear equation 

systems, exact numerical data might be unrealistic, but there could be considered uncertain data as more aspects 

of a real word problem.  

Recently, fuzzy systems are used to study a variety of problems ranging from fuzzy topological spaces to 

control chaotic systems [5, 14, 17], fuzzy metric spaces [7], fuzzy differential equations [1, 2], fuzzy linear 

systems [3, 4, 20] and particle physics [9, 11- 14]. The concept of fuzzy numbers and arithmetic operations with 

this numbers were first introduced and investigated by Zadeh [6] and others. All of which observed the fuzzy 

number as a collection of α−levels, 0 ≤  𝛼 ≤  1, [19]. Additional related material can be found in [8, 15, 16]. 

Any linear system representing real-world situations involves a lot of parameters whose values are assigned 

by experts, and in the conventional approach, they are required to fix an exact value to the aforementioned 

parameters. However, both experts and the decision-maker (DM) frequently do not precisely know the value of 

those parameters. If exact values are suggested these are only statistical inference from past data and their 

stability is doubtful, so the parameters of the problem are usually defined by the DM in a un- certain way or by 

means of language statement parameters. Therefore, it is useful to consider the knowledge of experts about the 

parameters as fuzzy data.   This paper considers FLS problems  𝐴�̃�   =  �̃�  where �̃�  and then  X̃ are fuzzy 
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numbers. The aim of this paper is to introduce a strategy for solving FLS based on ranking method, and 

fuzziness index function, [18]. In section 2, some notation and basic definitions related to subjects are explained. 

In Section 3, we show how we use our method to solve FLS in order to define the fuzziness index function. 

Finally in Section 4, we solve a numerical example. Finally, conclusion is drawn in Section 5. 

2. Notation and Basic Definitions 

A fuzzy set �̃�  is a pair (𝐴𝑙(𝛼), 𝐴𝑟(𝛼)) ; 0  ≤   ≤  1  which  𝐴𝑙(𝛼)  and 𝐴𝑟(𝛼)  satisfy the following 

requirements: 

a: 𝐴𝑙(𝛼)  is a bounded monotonic increasing left continuous function;  

b: 𝐴𝑟(𝛼) is a bounded monotonic decreasing left continuous function;  

c: 𝐴𝑙(𝛼) ≤ 𝐴𝑟(𝛼); 0  ≤ α ≤  1. 

A fuzzy number  A is nonnegative if 𝐴𝑙(𝛼)  ≥  0. 

For  arbitrary    𝐴 = (𝐴𝑙(𝛼), 𝐴𝑟(𝛼))   and  B˜  =  (Bl(α), Br(α))  and     we define addition A B   and scalar 

multiplication by k R   as addition and multiplication as defined by Eqs. (1) and (2) is denoted by E1 and is a 

convex cone. 

( ( ) ( ), ( ) ( ))l l r rA B A B A B                        (1) 

( ( ), ( )), 0

( ( ), ( )), 0

l r

r l

kA kA k
kA

kA kA k

 

 

 
 


                                     (2) 

The collection of all the fuzzy numbers with addition and multiplication defined by Eqs. (1) and (2) is denoted 

by 1E  and it is a convex cone. 

Definition 1 [18]. For arbitrary  ( ( ), ( ))l rA A A   the number 

 0 1
( (1) (1))

2

l rA A A                     (3) 

is said to be a location index number of A and two nonincreasing left continuous functions 
* 0 * 0( ) ( ),          ( ) ( )l l r rA A A A A A                         (4) 

are called the left fuzziness index function and the right fuzziness index function, respectively. 

According to Definition 1, every fuzzy number A  can be represented by 0 * *( , ( ), ( )).l rA A A   

Theorem 1. [1], Define  
1 0 * *: ; ( , ( ), ( )).l rj E R L L A A A A                       (5) 

Then,  𝑗  is a bijection, i.e.,  𝑗  is a one-to-one mapping, where R L L  is the Cartesian product and  

{ | :[0,1] [0, ) L h h    is nondecreasing and left continuous. 

Definition 2.  Suppose ( ( ), ( ))l rA A A  and ( ( ), ( ))l rB B B  then 
0 0 * * * *{ , ( ) ( ), ( ) ( . ),  0 1} l l r rA B A B A B A B                       (6) 

Proposition 1. For arbitrary fuzzy number 
0 * *( , ( ), ( ))l rA A A A  and 

0 * *( , ( ), ( ))l rB B B B  and kR   from 

definition 1, 
0 0 * * * *( , ( ) ( ), ( ) ( ))l l r rA B A B A B A B                       (7) 

0 * *

0 * *

( , ( ), ( )), 0

( , ( ), ( )), 0

l r

r l

kA kA kA k
kA

kA kA kA k

 

 

 
 

  
                 (8) 

Proof. Let, ( ( ), ( ))l rA A A  and ( ( ), ( ))l rB B B  then  
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            (10) 

The proof of * * *( ) ( ) ( )r r rA B A B    is similar. 

If  0k   

0 01 1 1
( ) (( ) (1) ( ) (1)) ( (1) (1)) ( (1) (1))

2 2 2

l r l r l rkA kA kA kA kA k A A kA                        (11) 

 

* 0 0 0 *( ) ( ) ( ) ( ) ( ) ( ( )) ( )l l l l lkA kA kA kA kA k A A kA                                 (12) 

In case 0k  , the proof is similar. Also it is clear that * *( ) ( )r rkA kA  . 

3. Fuzzy Linear System   

 Consider the following fuzzy linear system 

1

  ; 1,...,
n

ij j i

j

a x b i m


                  (13) 

where ija   and 0 * *( , ( ), ( ))l r

i i i ib b b b   and 0 * *( , ( ), ( ))l r

j j j jx x x x   are fuzzy numbers for 

1,...,   1,...,i m and j n  . 

 

Model (13) is rewriten as follows: 

0 0

  ; 1,...,
ij ij

ij j ij j i

a a

a x a x b i m
 

    .                                     (14) 

Regarding Proposition 1 and Definition 2, the model (14) is given as follows: 

0 0 * * * * 0 * *

0 0 0 0 0 0

( , ( ) ( ), ( ) ( )) ( , ( ), ( )) 
ij ij ij ij ij ij

l r r l l r

ij j ij j ij j ij j ij j ij j i i i

a a a a a a

a x a x a x a x a x a x b b b     
     

                         (15) 

for 1,...,i m . 

For solving model (15), first we solve the following location model. 

0 0 0

0 0

  :        1,...,
ij ij

ij j ij j i

a a

locationmodel a x a x b i m
 

    .              (16) 

If the location model is infeasible, then the model (17) will be infeasible, otherwise we solve the 

following fuzziness model: 

* *

1 1

* * *

1 1

* * *

1 1

* *

( ) ( )

. ( ) ( ) ( )    1,...,

( ) ( ) ( )    1,...,

( ) 0,  ( ) 0

n n
l r

j j

j j

n n
l r l

ij j ij j i

j j

n n
r l r

ij j ij j i

j j

l r

j j

max x x

s t x x b i m

x x b i m

x x

 

    

    

 

 

 

 



  

  

 

 

 

 

                           (17) 

where 
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           (18) 

We say if fuzziness model (17) is feasible then 0 * *( , ( ), ( )); 1,...l r

j j j jx x x x j n   is an solutions of the 

model (13) for any [0,1] . 

Theorem 2. The , 1,...jx j n  are fuzzy numbers. 

Proof.  Regarding to definition 1, it is sufficient to show *( )l

jx  and *( )r

jx  are nondecreasing left continuous 

functions on [0,1] , which from the models (17) is clear. 

4. Numerical Examples 

To illustrate our method, we consider following examples. 

Example 1. Consider the following linear system. 

1 2 1

1 2 2

2

2 3

x x b

x x b

  


 

                    (19) 

   where 1 ( 3,1,2,7)b   and 2 ( 17, 10, 7,1)b     are trapezoidal fuzzy numbers. 

First, we solve the following location model 

0 0

1 2

0 0

1 2

2 1.5

2 3 8.5

x x

x x

  


  
                        (20) 

which the solutions are 0 0

1 21 3.5x and x  . Now, we solve the following fuzziness model 

 
* * * *

1 2 1 2

* *

2 1

* *

1 2

* *

1 2

* *

2 1

* * * *

1 2 1 2

( ) ( ) ( ) ( )

. ( ) 2 ( ) 4.5 4

2 ( ) ( ) 5.5 5

2 ( ) 3 ( ) 8.5 7

3 ( ) 2 ( ) 9.5 8

( ) 0 ( ) 0 ( ) 0 ( ) 0

l l r r

l r

l r

l r

l r

l l r r

max x x x x

s t x x

x x

x x

x x

x x x x

   

  

  

  

  

   

  

  

 

  

 

   

                              (21) 

The results are in Table 1 for 0,.1,.2,...,.9,1  . 
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                                   Table 1. Location index number and two fuzziness indexes for optimal solutions 

0 * * 0 * *

1 1 1 2 2 2( , ( ), ( )) ( , ( ), ( ))

0 (1,2,1) (3.5,2.5,1.5)

.1 (1,1.8,.9) (3.5,2.3,1.4)

.2 (1,1.6,.8) (3.5,2.1,1.3)

.3 (1,1.4,.7) (3.5,1.9,1.2)

.4 (1,1.2,.6) (3.5,1.7,1.1)

.5 (1,1,.5) (3.5,1.5,1)

.6 (1,.8,.4) (3.5

l r l rx x x x x x    

,1.3,.9)

.7 (1,.6,.3) (3.5,1.1,.8)

.8 (1,.4,.2) (3.5,.9,.7)

.9 (1,.2,.1) (3.5,.7,.6)

1 (1,0,0) (3.5,.5,.5)

 

Note that 1 ( 1,1,2)x   is triangular and 2 (1,3,4,5)x  is trapezoidal fuzzy numbers where satisfy on FLS 

(19). 

 
Example 2. A manufacturing company makes three types of computers A, B, and C. Computer A takes about 

19 hours for assembling (the ingredients), 2 hours for testing (the hardware), 2 hours for installing (the 

software). Computer B takes about 12 hours for assembling, 4 hours for testing, 2 hours for installing. Computer 

C takes about 6 hours for assembling, 1 hours for testing, 4 hours for installing. 

    The company has a factory for which it works about 1 (1469.3,1897,2433.2)b   labor-hours each month for 

assembling, 2 (358.3,434.5,543.8)b   labor-hours for testing, and 3 (447.3,535.5,667.4)b  hours for installing. 

How many computers of each kind can the factory make in a month? We firstly utter the linear equations that 

can describe this situation. Let 1 2,x x and 3x  show the number of computers of type A, B and C, respectively. 

Together, these equations form a fuzzy linear system 

1 2 3 1

1 2 3 2

1 2 3 2

19 12 6    ;

2 4    ;

2 2 4    ;

x x x b for assembling

x x x b for testing

x x x b for installing





 

  

  







                             (22) 

where 1 2(1469.3,1897,2433.2), (358.3,434.5,543.8)b b   and 3 (447.3,535.5,667.4)b   are triangular fuzzy 

numbers. 

First, we solve the following location model 

0 0 0

1 2 3

0 0 0

1 2 3

0 0 0

1 2 3

19 12 6 1897

2 4 434.5

2 2 4 535.5

x x x

x x x

x x x

   


  
   

                                        (23) 

which the solutions are 0

1 26.41176471x  , 0 0

2 374.57352942 83.38235292x and x  . Now, with solving the 

fuzziness model results are in Table 2 for 0,.1,.2,...,.9,1  . 
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Table 2. Location index number and two fuzziness indexes for optimal solutions 

 

 

Note that 1 (13.55176471,26.41176471,38.11296471)x  , 2 (64.61352942,74.57352942,91.36592942)x  and 

3 (72.74235292,83.38235292,102.1105529)x  are triangular fuzzy numbers where satisfy on FLS (22). 

 

5. Conclusion 

In this paper, a new method based on fuzzy operations approach, [18], for solving Fuzzy Linear system is 

introduced. First we solved the location model and then decided about feasibility or infeasibility of FLS. The 

decision maker can intervene in all the steps of the decision process which makes our approach very useful to be 

applied in a lot of real-world problems where the information is uncertain or incomplete, like environmental 

management, project investment, marketing and quantum physics [2, 3]. 
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