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A R T I C L E  I N F O  A B S T R A C T 

In an effort to make modification on the classical Hestenes--Stiefel method, 

Shengwei et al. proposed an efficient conjugate gradient method which 

possesses the sufficient descent condition when the line search fulfils the strong 

Wolfe conditions (by restricting the line search parameters). Here, we develop a 

three--term extension of the method which guarantees the sufficient descent 

condition independent to the line search. Also, we establish global convergence 

of the method using convexity assumption. At last, practical merits of the 

proposed method are investigated by numerical experiments on a set of CUTEr 

test functions. The results show numerical efficiency of the method. 
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1. Introduction 

Conjugate gradient (CG) algorithms are among the efficient and popular tools for solving optimization 

problems which appear in practical applications. As typical cases, Lin et al. [33] used the method to deal with 

the statistical model of mineral potential prediction. Bouter et al. [18] and Esmaeili et al. [24] employed the 

method in the well-known image reconstruction problem. Efficiency of the CG algorithm in signal recovery has 

been investigated by Abubakar et al. [1] and Wan et al. [40]. Li et al. [31] applied the method to improve 

training of the neural networks. Liu et al. [34] applied the CG method for solving the optimization problems 

which appear in the four-dimensional variational data assimilation systems, to be used in the numerical weather 

prediction. Li et al. [32] proposed a class of scaled CG methods which can be applied to non-negative matrix 

factorization. CG methods have been also well-developed for solving nonlinear equations [9, 41, 43] as well as 

nonlinear least squares problems [19]. 

Generally, it has been believed that among the main reasons of popularity of the CG methods, there are the 

explicit usages of second order information of the objective function, strong convergence properties [17], 

simplicity of the implementation as well as low memory requirement. As known, for the n-dimensional 
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unconstrained optimization problem, min𝑥∈ℝ𝑛 𝑓(𝑥), with the smooth objective function. The iterations of a CG 

method are in the form of  𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘, 𝑘 ≥ 0,  starting from an initial point 𝑥0 ∈ ℝ𝑛 where 𝑠𝑘 = 𝛼𝑘𝑑𝑘 in 

which 𝛼𝑘 > 0 is a step length determined by line search along the CG direction, 𝑑𝑘, often defined by 

  𝑑0 = −𝑔0,   𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘 𝑑𝑘, 𝑘 ≥ 0,                                                                                               (1) 

       where 𝑔𝑘 = ∇𝑓(𝑥𝑘) and 𝛽𝑘  is a scalar called the CG parameter. A review of the literature reveals 

important role of the CG parameter on performance of the methods; see for example [2-7, 13-15, 22, 23, 26, 29, 

35]. 

To achieve the descent property which may not necessarily hold for some of the classical CG methods [29], 

several efforts have been made mainly in the following lines:  conducting eigenvalue analyses on the search 

direction matrix of some extended versions of the classical methods [10, 11, 36], developing spectral/scaled 

(preconditioned) versions of the methods [8, 12, 25] and extending three-term versions of the classical CG 

methods [16, 2, 38, 44]. 

As an extension of the Hestenes-Stiefel (HS) [30] method, one of the well-known three-term CG algorithms 

has been suggested by Zhang et al. [44] in which 

𝑑0
𝑀𝐻𝑆 = −𝑔0, 𝑑𝑘+1

𝑀𝐻𝑆 = −𝑔𝑘+1 +
𝑔𝑘+1

𝑇  𝑦𝑘

𝑑𝑘
𝑇 𝑦𝑘

 𝑑𝑘 −
𝑔𝑘+1

𝑇  𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

 𝑦𝑘 , 𝑘 ≥ 0,                                                                 (2) 

Here, we suggest a three--term extension of a recent CG method proposed by Shengwei et al. [42] and show 

that the method satisfies the sufficient descent condition independent to the line search, leading to global 

convergence. These are discussed in Section 2. Other parts of this study consist of investigating computational 

efficiency of the given method in Section 3, and reporting concluding remarks in Section 4. 

2. A three--term conjugate gradient method 

In order to improve the theoretical and numerical performance of the classical Hestenes-Stiefel method, 

Shengwei et al. [37] proposed the following CG parameter inspired by the modification approach of [42]: 

𝛽𝑘
𝑀𝐻𝑆 =

𝑔𝑘+1
𝑇  𝑧𝑘

𝑑𝑘
𝑇𝑦𝑘

,                                                                                                                                (3) 

  where 𝑧𝑘 = 𝑔𝑘+1 −
||𝑔𝑘+1||

||𝑔𝑘||
𝑔𝑘 and ||.|| stands for the Euclidean norm. They established descent property as 

well as global convergence of the corresponding CG method under the strong Wolfe line search conditions [39], 

i.e. 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘,                                                                                         (4) 

|∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘| ≤ −𝜎𝑔𝑘
𝑇𝑑𝑘,                                                                                                    (5) 

with 0 < δ < σ < 1. Besides, the MHS method satisfies the sufficient descent condition, that is 

      𝑔𝑘
𝑇𝑑𝑘 ≤ −𝜚||𝑔𝑘||2,                                                                                                                   (6) 

      where 𝜚 > 0 is a constant, provided that 𝜎 < 0.25. 

Here, we suggest a three--term extension of the MHS method based on the approach of [44], namely 

TTMHS, with the following search directions: 

𝑑0
TTMHS = −𝑔0, 𝑑𝑘+1

TTMHS = −𝑔𝑘+1 + 𝛽𝑘
MHS 𝑑𝑘 −

𝑔𝑘+1
𝑇  𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

 𝑧𝑘 , 𝑘 ≥ 0.                                                                (7) 
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Note that by exact line search we have 𝑔𝑘+1
𝑇  𝑑𝑘 = 0, and consequently, in such situation TTMHS reduces to 

MHS.  

Also, it can be seen that 𝑔𝑘+1
𝑇 𝑑𝑘+1

TTMHS ≤ −||𝑔𝑘+1||2,  for all 𝑘 ≥ 0. So, in contrast to MHS which satisfies 

the sufficient descent condition (6) when the strong Wolfe line search conditions hold with 𝜎 < 0.25, TTMHS 

satisfies the sufficient descent condition independent to the line search. 

Now, we are in a position to spell out our algorithm as follows: 

The TTMHS algorithm: 

Step 0: Choose an 𝑥0 ∈ ℝ𝑛 , the line search parameters 0 < δ < σ < 1 , and the tolerance 𝜖 > 0 .                 

Set 𝑑0 = −𝑔0and 𝑘 = 0. 

Step 1: If ||𝑔𝑘|| < 𝜖, then stop. 

Step 2: Compute the search direction 𝑑𝑘 by (7). 

Step 3: Compute the step length 𝛼𝑘 satisfying (4) and (5). 

Step 4: Set  𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

Step 5: Set 𝑘 = 𝑘 + 1 and go to Step 1. 

Here, we establish convergence of the TTMHS method. In this regard, the following classic assumptions are 

needed [44]. 

Assumption 1. (i) The level set Ω = {𝑥: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded. (ii) In some neighbourhood 𝒮 of Ω, the 

function 𝑓 is continuously differentiable and its gradient is Lipschitz continuous; that is, there exists a positive 

constant L>0 such that 

||𝛻𝑓(𝑥) − 𝛻𝑓(𝑦)|| ≤ 𝐿||𝑥 − 𝑦||, ∀𝑥, 𝑦 ∈ 𝒮.                                                                                                 (8) 

Based on Assumption 1, it can be seen that there exists positive constant τ such that ||∇𝑓(𝑥𝑘)|| ≤ τ, for all 

𝑥 ∈ 𝒮. Also, since {𝑓(𝑥𝑘)}𝑘≥0  is a decreasing sequence, we have {𝑥𝑘}𝑘≥0 ⊆ Ω. Hereafter, we suppose that 

Assumption 1 holds. 

Moreover, without specification, the sequences {𝑥𝑘}𝑘≥0 and {𝑑𝑘}𝑘≥0 are respectively generated by (1) and 

(7). Now, we need the following result to establish the convergence of the TTMHS method. 

Theorem 1. For TTMHS method, if 𝑓 is uniformly convex on the neighborhood 𝒮 of Ω, and the step length 𝛼𝑘 

is determined using the Wolfe line search (4) and (5), then, 𝑙𝑖𝑚 𝑖𝑛𝑓𝑘→∞ ||𝑔𝑘|| = 0.                                                                                                                       

Proof. At first, considering Theorem 1.3.16 of [39], the uniform convexity of the smooth function 𝑓 ensures 

that there exists a constant  𝜈 > 0 such that 

𝑠𝑘
𝑇𝑦𝑘 ≥ 𝜁||𝑠𝑘||2, ∀𝑘 ≥ 0.                                                                                                                                  (9) 

  which together with (7) and (8), we have 

∥ 𝑑𝑘+1 ∥≤∥ 𝑔𝑘+1 ∥ +|𝛽𝑘
𝑀𝐻𝑆|  ∥ 𝑑𝑘 ∥ +

|𝑔𝑘+1
𝑇 𝑑𝑘|

𝑑𝑘
𝑇

𝑦
𝑘

∥ 𝑧𝑘 ∥ 

               ≤∥ 𝑔𝑘+1 ∥ +2
∥ 𝑔𝑘+1 −

∥ 𝑔𝑘+1 ∥
∥ 𝑔𝑘 ∥ 𝑔𝑘 ∥

𝑑𝑘
𝑇𝑦𝑘

 ∥ 𝑔𝑘+1 ∥∥ 𝑑𝑘 ∥ 

              ≤∥ 𝑔𝑘+1 ∥ +2
∥ 𝑔𝑘+1 − 𝑔𝑘 ∥ +∥ 𝑔𝑘 −

∥ 𝑔𝑘+1 ∥
∥ 𝑔𝑘 ∥ 𝑔𝑘 ∥

𝑑𝑘
𝑇𝑦𝑘

∥ 𝑔𝑘+1 ∥∥ 𝑑𝑘 ∥ 
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              ≤∥ 𝑔𝑘+1 ∥ +2
∥ 𝑔𝑘+1 − 𝑔𝑘 ∥ +∥∥ 𝑔𝑘 ∥ −∥ 𝑔𝑘+1 ∥∥

𝑑𝑘
𝑇𝑦𝑘

∥ 𝑔𝑘+1 ∥∥ 𝑑𝑘 ∥ 

            ≤∥ 𝑔𝑘+1 ∥ +4
∥ 𝑔𝑘+1 − 𝑔𝑘 ∥

𝑠𝑘
𝑇𝑦𝑘

∥ 𝑔𝑘+1 ∥∥ 𝑠𝑘 ∥≤ 𝜏 + 4𝜏
𝐿

𝜈2
 

Hence, taking Lemma 3.1 of [38] into account, the proof is complete. 

3. Numerical experiments 

Here, we computationally investigate efficiency of the CG methods TTMHS with the search direction (7), MHS 

with the parameter (3) and TTHS with the search direction (2). The software and hardware information are 

given in [3]. Besides, test functions information, including 81 problems of the CUTEr library [27] has been 

provided in Table 1. 

Table 1. Test problems data 

Function n Function  n Function  n 

ARGLINA 200  DIXMAANK 3000  MANCINO 100 

 BDEXP 5000  DIXMAANL 3000  MOREBV 5000 

BIGGSB1 5000  DIXON3DQ 10000  MSQRTALS 1024 

 BQPGABIM 50  DMN15103 99  MSQRTBLS 1024 

 BQPGASIM 50  DQDRTIC 5000  NCB20 5010 

 BROYDN7D 5000  DQRTIC 5000  NCB20B 5000 

 BRYBND 5000  DRCAV1LQ 4489  NONCVXU2 5000 

 CHAINWOO 4000  DRCAV2LQ 4489  NONDQUAR 5000 

CHENHARK 5000  DRCAV3LQ 4489  PENALTY2 200 

 CHNROSNB 50  EDENSCH 2000  POWELLSG 5000 

 CLPLATEB 5041  EG2 1000  POWER 10000 

 COSINE 10000  EIGENALS 2550  QUARTC 5000 

CRAGGLVY 5000  EIGENBLS 2550  SCHMVETT 5000 

 CURLY10 10000  EIGENCLS 2652  SENSORS 100 

 CURLY20 10000  ENGVAL1 5000  SINQUAD 5000 

 CURLY30 10000  ERRINROS 50  SPARSQUR 10000 

 DECONVU 63  EXTROSNB 1000  SPMSRTLS 4999 

DIXMAANA 3000  FLETCBV2 5000  SROSENBR 5000 

 DIXMAANB 3000  FLETCBV3 5000  TESTQUAD 5000 

 DIXMAANC 3000  FLETCHBV 5000  TOINTGOR 50 

 DIXMAAND 3000  FLETCHCR 1000  TOINTGSS 5000 

DIXMAANE 3000  FMINSRF2 5625  TOINTPSP 50 

 DIXMAANF 3000  FMINSURF 5625  TOINTQOR 50 

 DIXMAANG 3000  FREUROTH 5000  TRIDIA 5000 

 DIXMAANH 3000  GENHUMPS 5000  VARDIM 200 

 DIXMAANI 3000  GENROSE 500  VAREIGVL 50 

 DIXMAANJ 3000  LIARWHD 5000  WOODS 4000 

The approximate Wolfe conditions of [28] have been employed in our implementations with the same values of 

the parameters. The solution process were ended up when 𝑘 > 10000 or ||𝑔𝑘|| < 10−6(1 + |𝑓(𝑥𝑘)|) .To assess 

quality of the outputs, we used the performance profile of [20], with the notations of [5], on TNFGE (the total 

number of function and gradient evaluations [28]), and the CPUT (CPU time in second). To describe the results 

in vivid details, Figures 1 and 2 show that with respect to TNFGE, MHS outperforms TTHS and also, TTMHS 

is superior to both of them. Whereas, with respect to CPUT, TTHS and MHS are competitive and they are more 

time consuming than TTMHS. So, as affirmed by Figures 1 and 2, TTMHS outperforms the others. 
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              Figure 1. Results of comparisons based on TNFGE 

                                               
      Figure 2. Results of comparisons based on CPUT  

4. Conclusions and future works 

As known, developing three-term extensions of the classical conjugate gradient methods in order to achieve the 
sufficient descent property has attracted special attentions [38]. Here, based on the insight gained by the 
approach of [42], a three-term extension of the nonlinear conjugate gradient method proposed by Shengwei et 
al. [37] has been suggested. It has been shown that the method fulfils the effective sufficient descent condition 
independent to the line search. Moreover, it has been established that the proposed method is globally 
convergent for uniformly convex functions. Using a set of standard test functions of the CUTEr library [27], 
numerical experiments have been implemented to investigate efficiency of the given method. The results have 
been compared using the Dolan-Moré [20] performance profile. It has been observed that the proposed method 
is computationally promising. 

As a final note, the convergence of the proposed method relies on convexity of the objective function as well 
as employing the Wolfe line search strategy. As a future work, one can establish the convergence of the 
proposed method for general functions regardless of line search technique. 

Conflict of interest: The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 
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