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A R T I C L E  I N F O  A B S T R A C T 

Data Envelopment Analysis (DEA) is an impeccable approach based on 

mathematical programming for the efficiency measurement of homogeneous 

Decision-Making Units (DMUs). One of the topics of interest in data 

envelopment analysis (DEA) is the sensitivity and stability analysis of a 

specific DMU that determines ranges within which all data may be altered for 

any DMU before a reclassification from efficient to inefficient status (or vice 

versa) happens. In many real-world applications, the managers to estimate the 

under supervision DMUs encounter stochastic data and require a way to deal 

with the sensitivity analysis of DMUs with this special data. In DEA, efficient 

DMUs are of primary importance as they define the efficient frontier. The 

intent of this paper is to present the sensitivity analysis with stochastic data for 

efficient DMUs when inputs and outputs are stochastic and variations in the 

data are simultaneously considered for all DMUs. The models explained in this 

paper for treating sensitivity analysis in DEA are expanded by according them 

chance-constrained programming formulations. The ordinary route used in 

chance-constrained programming is followed here by replacing these stochastic 

models with their deterministic equivalents. The optimal solution of these 

models leads to allowable input/ output variations. 
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1. Introduction 

Analyzing and managing the efficiency of entities is the main responsibility of the top-level management 

team that can be carried out by different methods. Data envelopment analysis (DEA) introduced by Charnes et 

al. [10] is identified as a successful tool in evaluating the relative performance of entities and organizations, 

and based on various production process assumptions, several different models have been developed [39, 41, 

45, 55, 57, 60]. Since DEA is data-based, it is significant to assess possible input/output changes (data 

perturbation) of a DMU such that its obtained efficiency classification stays fixed. In the context of DEA, 

sensitivity analysis has been one of the remarkable issues which express to what extent perturbations in the 

input/output data are tolerable before changing DEA efficiency. Numerous studies have addressed to this topic, 
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see, for example, Ahn and Seiford [1], Smith [51], Sexton et al. [50], Charnes and Neralic [12], Seiford and 

Zhu [48, 49], Charnes et al. [11, 13], Thompson et al. [53, 54], Jahanshahloo et al. [26], Neralić and Wendell 

[38], Hladík [23], Khalili-Damghani and Taghavifard [29] and He et al. [22] among others.  

Charnes et al. [8] discussed analytical methods of DEA sensitivity analysis. They presented an algorithmic 

approach by updating the inverse of the optimal basis matrix and obtained the stability radius in the direction of 

one output for preserving the efficiency of efficient DMU. They also noted that standard methods of linear 

programming sensitivity analysis are not being used in DEA. Neralić [37] developed sufficient conditions for 

the preservation of efficiency classification of all DMUs in the additive model of DEA using an approximate 

inverse of the perturbed optimal basis matrix. 

Lotfi and Jahanbakhsh [33] examined the efficiency and effectiveness simultaneously in a three-stage 

process using a unified model. Zhou et al. [58] estimated environmental performance which is the basis for 

analyzing environment policy and decision making. Kang et al. [28] evaluated the efficiency of the emergency 

department. Tavakoli et al. [52] assessed organizational performance concerning human capital management 

by fuzzy DEA. Mostafaee and Soleimani-Damaneh [35] studied the anchor points in DEA and the main results 

of their paper led to a new relationship between DEA and sensitivity analysis in linear programming. 

Hosseinzadeh et al. [24] reviewed ranking articles in DEA, which categorized ranking methods into seven 

groups. Liu and Wang [23] studied the sensitivity analysis of profit based on system dynamics. Lotfi et al. [34] 

estimated return-to-scale sensitivity analysis in supply chain management. Emrouznejad and Yang [20] 

surveyed scientific studies during the first 40 years of DEA (1978-2018). Charnes and Neralić [12] introduced 

sensitivity analysis of the additive model for an efficient unit and provided sufficient conditions for 

simultaneous variations of all inputs and all outputs such that its obtained efficiency classification does not 

change. 

Jahanshahloo et al. [26] considered DEA interval models to define the stability radius of each unit in the 

presence of interval data in such a way that the efficiency classification remains unchanged. Thompson et al. 

[53, 54] used the strong complementary slackness condition (SCSC) to analyze the stability of the CCR model 

in a situation where the data for all efficient DMUs and all inefficient DMUs simultaneously changed in 

opposite directions but to the same ratio. Charnes et al. [11] and Charnes et al. [13] used the super-efficiency 

model for sensitivity analysis of each DMU. In this approach, they considered a deteriorating scenario for 

efficient DMUs and an improving scenario for inefficient DMUs. Zhu [59] amended the work of Charnes et al. 

[13] to identify permissible variations in every input and output for each DMU before an alteration occurs in 

status for the DMU under evaluation. Jahanshahloo et al. [25] suggested a new approach to sensitivity analysis 

of a DMU under test. They extend a stability region for DMUo by using the supporting hyperplanes which pass 

through DMUo and the new frontier which is constructed by eliminating DMUo from the observations set. 

Boljunčić [7] employed an iterative procedure. He achieved possible input/output changes by using the 

optimal simplex tableau and applying parametric programming (input/output changes as parameters). 

Mozaffari et al. [36] provided a method for sensitivity and stability analysis of all DMUs with interval data 

using the MOLP approach. Jahanshahloo et al. [27] examined the sensitivity analysis of the inefficient DMUs, 

their technique yielded an exact necessary change region in which the efficiency score of a specific inefficient 

DMU changes to a defined efficiency score. Daneshvar et al. [16] and Ghazi et al. [21] developed the stability 

region by supporting hyperplanes of the PPS. Dar et al. [17] studied the sensitivity of performance 

classification and the returns to scale (CRS, IRS, and DRS) of DMUs based on input and output slacks. Of late, 

Khoveyni and Eslami [31] investigated the internal structures of DMUs to detect their efficiency stability 

regions. Their proposed method finds the stability regions of an extreme network-efficient two-stage 

production process when its inputs increase, its intermediate products and final outputs decrease, and the data 

of the other two-stage production processes remain fixed. Also, Arabjazi et al. [3] expanded the largest 

performance stability region for an extreme efficient DMU whose data can be changed in all directions of 
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input/output space, including both directions of improving the situation and worsening the situation such that 

under these changes the efficiency classification of all extreme DMUs will be preserved. Moreover, they found 

the largest symmetric cell to the center of the extremely efficient DMU under evaluation, leading to an 

efficiency stability radius. 

In recent years, studies on performance sensitivity analysis have been implemented with the presence of 

special data. Sanei et al. [46], Wen et al. [56], Khalili-Damghani and Taghavifard [29] investigated the 

sensitivity analysis with fuzzy data. Banihashemi et al. [4] obtained the stability region of efficient and 

inefficient units with integer data. Khodabakhshi et al. [30] extended sensitivity analysis of the super-efficiency 

of DMUs based on input relaxation super-efficiency measure. He et al. [22] determined the stability radius with 

bounded uncertainty.  

The methodologies discussed above developed sensitivity analysis methods for the situation in which data 

variations are applied to only the specific DMU that is being evaluated, and the data for the remaining DMUs 

are assumed to be fixed. This assumption may not be appropriate because data variations may exist in each 

input and output of all of the DMUs. Also in many real-world applications, the managers are faced with 

stochastic data and they require evaluating input/output changes in the presence of this particular data. In DEA, 

efficient DMUs are of primary importance as they define the efficient frontier. Therefore, in this paper, we 

present the sensitivity analysis of efficiency for efficient DMUs when inputs and outputs are stochastic and 

variations in the data are considered to not only all of the DMUs but also the input and output subsets of 

interest. 

The rest of this study is organized as follows. In Section 2, some basic concepts about DEA models and the 

sensitivity analysis method proposed by Seiford and Zhu [49] will be introduced. In Section 3, we will present 

sensitivity analysis with stochastic data. Finally, the conclusions and some suggestions for future research are 

given in Section 4. 

2. Preliminaries 

Suppose that there are n  homogenous decision-making units DMU ( 1,..., )j j n  that convert m inputs 

1,..., )ijx i m  into s outputs 1,..., )rjy r s  , and DMUo is the DMU under evaluation. The production possibility 

set Tv is defined by: 

 

1 1 1

(X,Y)  X X ,  Y Y ,  1,  0,  1,..., .
n n n

v j j j j j j

j j j

T j n
  

  
          
  

    (1) 

 

The above definition implies that the BCC model of Banker et al. [5] is as follows: 
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Moreover, the following linear programming problem is the additive model: 
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In linear programming problem (3), * *

1 1 1 1
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m s m s

i r i r

i r i r

s s s s   

   

 
    

 
     if and only if DMUo is Parato-

Koopmans Efficient (for details see [15]). 

We know that, in most models of DEA, the efficiency score of the best performers is one. To discriminate 

between these efficient DMUs, many methods have been suggested. One of the most important models for 

ranking extreme efficient units was proposed by Andersen and Petersen (AP) [2]. This model is: 
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 (4) 

 

Definition 1. (Reference Set). For a DMUo, we define its reference set Eo to be: Eo = {j | λj
*
 > 0} in some 

optimal solution to (2). 

 

Definition 2. (Pareto–Koopmans Efficiency). A DMU is fully efficient, if and only if it is not possible to 

improve any input or output without worsening some other input or output [15]. 

 

Definition 3. A DMUo is extreme efficient, if and only if it satisfies the following two conditions: 

(i)  It is efficient (Pareto–Koopmans Efficient). 

(ii) | Eo |= 1. 

 

Definition 4. A DMUo is non-extreme efficient, if and only if it satisfies the following two conditions: 

(i)   It is efficient (Pareto–Koopmans Efficient). 

(ii)  | Eo |> 1 (that is the CCR envelopment model corresponding DMUo has alternate optimal). 

 

Seiford and Zhu [49] provided a linear programming problem, a modified DEA model, to study the 

sensitivity of efficiency classifications in the additive model for simultaneous data changes in all DMUs where 

absolute changes in the data were of interest. The absolute data variation can be expressed as follows: 
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For efficient DMUo 

 

ˆ ˆ,   0,  ,    0,  
           

ˆ ˆ,                        ,                        

io io i i ro ro r r

io io ro ro

x x i I y y r o
and

x x i I y y r o

          
 

    
 (5) 

 

For DMUj  (j ≠ o) 
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where (^) represents adjusted data. Moreover the data changes defined above are not only applied to all 

DMUs, but also different in various inputs and outputs. Based upon the above data variations, Seiford and Zhu 

[49] provided the following model which studies the sensitivity of additive DEA models. 
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 (7) 

 

Based upon model (7), we have: 

Theorem 1.Suppose DMUo is a frontier point, if *0  ( )i i iu i I     , *0  ( )r r ru r O     , then DMUo 

remains as a frontier point, where * ( )iu i I  and * ( )ru r O  are optimal values in (7). 

For the proof and details, see Seiford and Zhu [49]. 

3. Stochastic Sensitivity Analysis  

Assume that  
T

j 1j mjX = x , . . . , x   and  j 1j sj

T

Y = y , . . . , y are the stochastic input and output vectors. These 

components have been considered to be normally distributed. Also, let Xj = (x1j, . . . , xmj)
T
 and Yj = (y1j, . . . , 

ysj)
T
 be the mean input and output vector, therefore the inputs and outputs have a normal distribution as 

follows. 

2 2x N(x , ),       y N(y , )ij ij ij rj rj rj      

Suppose all input and output components to be jointly normally distributed in the following chance-

constrained version of a stochastic DEA model: 
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1
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 (8) 

In this model, P means ‘‘probability’’ and α is a level of error between 0 and 1, which is a predetermined 

number.  Now, we apply this model to define stochastic efficiency as follows. 

Definition 5. (Stochastic Efficiency). DMUo is stochastic efficient if and only if the following condition is 

satisfied: 

* *
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The ij iox x , ij ioy y  values for DMUo emerge on the left as well as on the right inside the braces of (8). 

Therefore, we can always get a solution with 1o  and 0j  ( j o ) and all slacks zero. Now, we apply 

chance-constrained problem and, propose the following stochastic model of the model (7) in which DMUo is a 

stochastic efficient: 
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 (9) 

To analyse the sensitivity and determine the stability region of a stochastic DMUo, model (9) can be 

converted into the deterministic model through the following procedures and using the notation conventions in 

Cooper et al. [14]. For this purpose, consider the first chance-constraint of the model (9). The input constraints 

can be transformed into equality form by adding 0i  : 

1,

1-                  
n

j ij io i i

j j o

P x x u i I

 

 
        

 
  (10) 
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Remark 1. Let T be a random variable and a, b and c constant numbers, if P (T ≤ a) = c and b ≤ a then there 

exists d ≤ c such that P (T ≤ b) = d. 

By bringing the above remark into use; there exist 0is   such that: 

ij io
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Using the above remark and defining new slack variables for the other three unequal constraints, we also 

convert them to equality. Applying these changes, we have the following model: 
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(12) 

 

Now we convert the stochastic sensitivity analysis model (12) with chance-constraints into a deterministic 

form. First, we obtain the deterministic form of the first constraint of the model (12) which is as follows: 

ij io
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Since each linear combination of normal random variables has a normal distribution, we have: 
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Taking into account the random variable ih , Relation (13) is rewritten as follows: 
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In the above relation, Φ is a function of the standard normal cumulative distribution. Hence: 

1( )                    
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i i i

i

u s h
i I

 

  
   

 
 

  
1( ) ( ) 0     i i i iu s h i I          

 

where 1  is the inverse of   and, is the so-called ‘‘fractile function’’. Therefore, the deterministic form 

of the chance-constraint will be as follows: 

1

1,
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n

j ij io i i i

j j o
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           (17) 

 

In Relation (12), other chance-constraints, like the first constraint, become deterministic. But the objective 

function and the constraint 
1,

1
n

j

j j o 

  are not stochastic, so they remain unchanged. Therefore, the 

deterministic form of the model (12) which has derived from model (9) is as follows: 
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An optimal choice of the variables in Relation (18) will also be optimal for Relation (12) and, vice versa, 

an optimal solution of Relation (12) will also be optimal for Relation (18). See the chapter on chance-

constrained programming in Ben Israel [6] which also develops a duality theory for these relations. Model (18) 

is a nonlinear programming problem because of the functional forms of ( )i  and ( )r  . Let 
i and 

r are 

non-negative variables. Replace ( )i  by 
i and ( )r  by 

r in the model (18), and add two quadratic equality 

constraints, 2 2( ( ))i i     and 2 2( ( ))r r    , to (18), then (18) is transformed to easily solvable quadratic 

programming problems. 
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(19) 

Model (19) is a quadratic programming model whose optimal solution results in permissible input / output 

changes of DMUo. The formulated model detects the stability radius for all DMUs within which absolute data 
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perturbations will not change the efficiency classification of test DMU. The approach considers not only the 

coinstantaneous absolute data perturbations of the inputs and outputs for all DMUs but also diverse input and 

output subsets. 

4.  Conclusions 

Uncertainties always exist in practical management and engineering problems. In many applications, a 

model with deterministic inputs and outputs cannot reasonably encompass all the important features of the 

problem. To obtain reliable results, the uncertainties should be taken into account, and corresponding DEA 

methods that handle uncertainties should be developed. Stochastic DEA models may fit well in such 

applications. This study extends sensitivity analysis to find the largest region that preserves the classification of 

the DMU with stochastic data. This sensitivity analysis approach simultaneously considers data perturbation in 

all DMUs, that is, the change of the evaluating DMUo and the changes of the remaining DMUs. The data 

perturbation in the evaluating DMU and the data perturbation in the remaining DMUs can be different when all 

remaining DMUs work in the direction of improving their efficiencies against the worsening of the efficiency 

of the evaluating efficient DMUo. 

One of the shortcomings of this study is the nonlinearity of the proposed model and also we are unable to 

discuss absolute changes directly through the modified CCR, because when absolute changes of data are 

considered, convexity condition is a necessary condition for performance sensitivity analysis. Future research 

will focus on improving the DEA models, theories, and applications for CCR models and the DEA models of 

fuzzy optimization and robust optimization to handle data uncertainty, for more details, see [18, 19, 40, 42-44, 

47]. 

Conflict of Interest: The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper 

References 

1. Ahn, T., & Seiford, L. M. (1993). Sensitivity of DEA to models and variable sets in a hypothesis test setting: The efficiency of 

university operations. Creative and Innovative Approaches to the Science of Management, 6, 191-208. 

2. Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 

39(10), 1261-1264. 

3. Arabjazi, N., Rostamy-Malkhalifeh, M., HosseinzadehLotfi, F., & Behzadi, M. H. (2021). Determining the Exact Stability Region 

and Radius through Efficient Hyperplanes. Iranian Journal of Management Studies,10.22059/IJMS.2021.317297.674405. 

4. Banihashemi, S., Tohidi, G., & Sanei, M. (2014). Sensitivity Analysis of Efficient and Inefficient Units in Integer-Valued Data 

Envelopment Analysis. International Journal of Mathematical Modelling & Computations, 4(1), 45-53. 

5. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data 

envelopment analysis. Management Science, 30(9), 1078-1092. 

6. Ben-Israel, A. (1962). On some problems of mathematical programming. Northwestern University. 

7. Boljunčić, V. (2006). Sensitivity analysis of an efficient DMU in DEA model with variable returns to scale (VRS). Journal of 

Productivity Analysis, 25(1-2), 173-192.  

8. Charnes, A., Cooper, W. W., Lewin, A. Y., Morey, R. C., & Rousseau, J. (1985). Sensitivity and stability analysis in DEA. Annals 

of Operations Research, 2(1), 139-156.  

9. Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (2013). Data envelopment analysis: Theory, methodology, and 

applications. Springer Science & Business Media. 

10. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of 

operational research, 2(6), 429-444. 

https://dx.doi.org/10.22059/ijms.2021.317297.674405


62 N. Arabjazi et al. / FOMJ 2(4) (2021) 52–64 

11. Charnes, A., Haag, S., Jaska, P., & Semple, J. (1992). Sensitivity of efficiency classifications in the additive model of data 

envelopment analysis. International Journal of Systems Science, 23(5), 789-798.  

12. Charnes, A., & Neralić, L. (1990). Sensitivity analysis of the additive model in data envelopment analysis. European journal of 

operational research, 48(3), 332-341.  

13. Charnes, A., Rousseau, J. J., & Semple, J. H. (1996). Sensitivity and stability of efficiency classifications in data envelopment 

analysis. Journal of Productivity Analysis, 7(1), 5-18. 

14. Cooper, W. W., Huang, Z., & Li, S. X. (1997). Satisficing DEA models under chance constraints. Annals of Operations Research, 

73, 279-25. 

15. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, 

references and DEA-solver software (Vol. 2): Springer. 

16. Daneshvar, S., Izbirak, G., & Javadi, A. (2014). Sensitivity analysis on modified variable returns to scale model in Data 

Envelopment Analysis using facet analysis. Computers & Industrial Engineering, 76, 32-39.  

17. Dar, Q. F., Pad, T. R., Tali, A. M., Hamid, Y., & Danish, F. (2017). Data Envelopment Analysis with Sensitive Analysis and 

Super-efficiency in Indian Banking Sector. International Journal of Data Envelopment Analysis, 5(2), 1193-1206. 

18. Ebrahimnejad, A., & Amani, N. (2021). Fuzzy data envelopment analysis in the presence of undesirable outputs with ideal points. 

Complex & Intelligent Systems, 7(1), 379-400. 

19. Ebrahimnejad, A., Nasseri, S. H., & Gholami, O. (2019). Fuzzy stochastic data envelopment analysis with application to NATO 

enlargement problem. RAIRO-Operations Research, 53(2), 705-721. 

20. Emrouznejad, A., & Yang, G.-l. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. 

Socio-Economic Planning Sciences, 61, 4-8.  

21. Ghazi, N. E., Lotfi, F. H., Rostamy-Malkhalifeh, M., Jahanshahloo, G., & Namin, M. A. (2018). Finding an improved region of 

efficiency via DEA-efficient hyperplanes. Scientia Iranica. Transaction E, Industrial Engineering, 25(5), 2852-2866. 

22. He, F., Xu, X., Chen, R., & Zhang, N. (2016). Sensitivity and stability analysis in DEA with bounded uncertainty. Optimization 

Letters, 10(4), 737-752.  

23. Hladík, M. (2019). Universal efficiency scores in data envelopment analysis based on a robust approach. Expert Systems with 

Applications, 122, 242-252. 

24. Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Khodabakhshi, M., Rostamy-Malkhlifeh, M., Moghaddas, Z., & Vaez-Ghasemi, M. 

(2013). A review of ranking models in data envelopment analysis. Journal of Applied Mathematics, 2013, Article ID 492421, 1-20. 

25. Jahanshahloo, G. R., Hosseinzadeh, F., Shoja, N., Sanei, M., & Tohidi, G. (2005). Sensitivity and stability analysis in DEA. 

Applied Mathematics and Computation, 169(2), 897-904.  

26. Jahanshahloo, G. R., Lofti, F. H., & Moradi, M. (2004). Sensitivity and stability analysis in DEA with interval data. Applied 

Mathematics and Computation, 156(2), 463-477. 

27. Jahanshahloo, G. R., Lotfi, F. H., Shoja, N., Abri, A. G., Jelodar, M. F., & Firouzabadi, K. J. (2011). Sensitivity analysis of 

inefficient units in data envelopment analysis. Mathematical and Computer Modelling, 53(5-6), 587-596. 

28. Kang, H., Nembhard, H., DeFlitch, C., & Pasupathy, K. (2017). Assessment of emergency department efficiency using data 

envelopment analysis. IISE Transactions on Healthcare Systems Engineering, 7(4), 236-246.  

29. Khalili-Damghani, K., & Taghavifard, B. (2013). Sensitivity and stability analysis in two-stage DEA models with fuzzy data. 

International Journal of Operational Research, 17(1), 1-37.  

30. Khodabakhshi, M., Rashidi, S., Asgharian, M., & Neralić, L. (2015). Sensitivity analysis of input relaxation super efficiency 

measure in data envelopment analysis. Data Envelopment Analysis Journal, 1(2), 113-134. 

31. Khoveyni, M., & Eslami, R. (2021). DEA efficiency region for variations of inputs and outputs. International Journal of 

Information Technology & Decision Making, 20(2), 707-732. 

32. Liu, S., & Wang, J. (2013). Dynamic Analysis of Profit Sensitivity Based on System Dynamics. International Journal of Applied 

Mathematics and Statistics™, 51(21), 568-575. 



                                                                                                           N. Arabjazi et al. / FOMJ 2(4) (2021) 52–64                                                                                                 63 

33. Lotfi, F. H., & Jahanbakhsh, M. (2015). Assess the efficiency and effectiveness simultaneously in a three-stage process by using a 

unified model. International Journal of Research in Industrial Engineering, 4(1-4), 15-23. 

34. Lotfi, F. H., Rostamy-malkhalifeh, M., & Ranjbar, H. (2017). Determination return to scale in supply chain management via DEA. 

International Journal of Applied Mathematics and Statistics, 56(1), 54-64. 

35. Mostafaee, A., & Soleimani-Damaneh, M. (2014). Identifying the anchor points in DEA using sensitivity analysis in linear 

programming. European Journal of Operational Research, 237(1), 383-388. 

36. Mozaffari, M., Gholami, K., & Dehghand, F. (2009). Sensitivity and stability analysis in DEA on interval data by using MOLP 

methods. Applied Mathematical Sciences, 3(18), 891-908.  

37. Neralić, L. (2004). Preservation of efficiency and inefficiency classification in data envelopment analysis. Mathematical 

Communications, 9(1), 51-62.  

38. Neralić, L., & Wendell, R. E. (2019). Enlarging the radius of stability and stability regions in data envelopment analysis. European 

Journal of Operational Research, 278(2), 430-441 

39. Peykani, P., Hosseinzadeh Lotfi, F., Sadjadi, S.J., Ebrahimnejad, A., & Mohammadi, E. (2021). Fuzzy chance-constrained data 

envelopment analysis: a structured literature review, current trends, and future directions. Fuzzy Optimization and Decision 

Making. https://doi.org/10.1007/s10700-021-09364-x 

40. Peykani, P., Mohammadi, E., & Emrouznejad, A. (2021). An adjustable fuzzy chance-constrained network DEA approach with 

application to ranking investment firms. Expert Systems with Applications, 166, 113938. 

41. Peykani, P., Mohammadi, E., Farzipoor Saen, R., Sadjadi, S.J., & Rostamy-Malkhalifeh, M. (2020). Data envelopment analysis 

and robust optimization: a review. Expert Systems, 37(4), e12534. 

42. Peykani, P., Mohammadi, E., Jabbarzadeh, A., Rostamy-Malkhalifeh, M., & Pishvaee, M. S. (2020). A novel two-phase robust 

portfolio selection and optimization approach under uncertainty: A case study of Tehran stock exchange. Plos One, 15(10), 

e0239810. 

43. Peykani, P., Namakshenas, M., Arabjazi, N., Shirazi, F., & Kavand, N. (2021). Optimistic and pessimistic fuzzy data envelopment 

analysis: empirical evidence from Tehran stock market. Fuzzy Optimization and Modeling Journal, 2(2), 12-21. 

44. Peykani, P., & Seyed Esmaeili, F. S. (2021). Malmquist Productivity Index under fuzzy environment. Fuzzy Optimization and 

Modeling Journal, 2(4), 10-19. 

45. Ren, T., Zhou, Z., & Xiao, H. (2021). Estimation of portfolio efficiency considering social responsibility: evidence from the multi-

horizon diversification DEA. RAIRO-Operations Research, 55(2), 611-637. 

46. Sanei, M., Noori, N., & Saleh, H. (2009). Sensitivity analysis with fuzzy data in DEA. Applied Mathematical Sciences, 3(25), 

1235-1241. 

47. Santos Arteaga, F. J., Ebrahimnejad, A., & Zabihi, A. (2021). A new approach for solving intuitionistic fuzzy data envelopment 

analysis problems. Fuzzy Optimization and Modeling Journal, 2(2), 46-56. 

48. Seiford, L. M., & Zhu, J. (1998a). Stability regions for maintaining efficiency in data envelopment analysis. European Journal of 

Operational Research, 108(1), 127-139.  

49. Seiford, L. M., & Zhu, J. (1998b). Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the 

Operational Research Society, 49(10), 1060-1071.  

50. Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for 

Program Evaluation, 1986(32), 73-105. 

51. Smith, P. (1997). Model misspecification in data envelopment analysis. Annals of Operations Research, 73, 233-252. 

52. Tavakoli, M., Molavi, B., & Shirouyehzad, H. (2017). Organizational performance evaluation considering human capital 

management approach by fuzzy-DEA: A case study. International Journal of Research in Industrial Engineering, 6(1), 1-16. 

53. Thompson, R., Dharmapala, P., & Thrall, R. M. (1994). Sensitivity analysis of efficiency measures with applications to Kansas 

farming and Illinois coal mining. In Data Envelopment Analysis: Theory, Methodology, and Applications (pp. 393-422). Springer.  

54. Thompson, R. G., Dharmapala, P., Diaz, J., González-Lima, M. D., & Thrall, R. M. (1996). DEA multiplier analytic center 

https://iranjournals.nlai.ir/handle/123456789/16781
https://www.sciencedirect.com/science/journal/03772217
https://www.sciencedirect.com/science/journal/03772217
https://www.sciencedirect.com/science/journal/03772217/278/2


64 N. Arabjazi et al. / FOMJ 2(4) (2021) 52–64 

sensitivity with an illustrative application to independent oil companies. Annals of Operations Research, 66(2), 163-177. 

55. Veiga, G.L., de Lima, E.P., Frega, J.R., & Da Costa, S.E.G. (2021). A DEA-based approach to assess manufacturing performance 

through operations strategy lenses. International Journal of Production Economics, 235, 108072. 

56. Wen, M., Qin, Z., & Kang, R. (2011). Sensitivity and stability analysis in fuzzy data envelopment analysis. Fuzzy Optimization and 

Decision Making, 10(1), 1-10. 

57. Zhou, Z., Gao, M., Xiao, H., Wang, R., & Liu, W. (2021). Big data and portfolio optimization: a novel approach integrating DEA 

with multiple data sources. Omega, 102479. 

58. Zhou, P., Poh, K. L., & Ang, B. W. (2016). Data envelopment analysis for measuring environmental performance. In Handbook of 

operations analytics using data envelopment analysis (pp. 31-49): Springer. 

59. Zhu, J. (2001). Super-efficiency and DEA sensitivity analysis. European Journal of Operational Research, 129(2), 443-455. 

60. Zhu, Q., Li, F., Wu, J., & Sun, J. (2021). Cross-efficiency evaluation in data envelopment analysis based on the perspective of 

fairness utility. Computers & Industrial Engineering, 151, 106926. 

 

 

 

 

 

Arabjazi, N., Rostamy_Malkhalifeh, M., Hosseinzadeh Lotfi, F., Behzadi, M. (2021). 
Stochastic Sensitivity Analysis in Data Envelopment Analysis. Fuzzy Optimization and 
Modelling Journal, 2(4), 52-64. 
 
https://doi.org/10.30495/fomj.2021.1946159.1049 

Received: 29 November 2021 Revised: 25 December 2021 Accepted: 26 December 2021 

 

Licensee Fuzzy Optimization and Modelling Journal. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

https://doi.org/10.30495/fomj.2021.1931398.1028
https://doi.org/10.30495/fomj.2021.1931398.1028

