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A R T I C L E  I N F O  A B S T R A C T 

Linear Programming as a practical technique for solving optimization problems 

with linear objective functions and linear constraint plays an essential role in 

mathematical programming.   Most of the real-world problems are included in 

inconsistent and astute uncertainty. That's why the optimal solution can't be 

found easily. The neutrosophic theory, as an extension of fuzzy set theory, is a 

powerful instrument to handle inconsistent, indeterminate, and incomplete 

information. This paper presents an applied approach for solving interval 

neutrosophic integer programming problems. By using the proposed approach, 

we can handle both incomplete and indeterminate data. In this respect, using a 

ranking function, we present a technique to convert the interval neutrosophic 

Integer Programming problem into a crisp model and then solve it by standard 

methods. 
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1. Introduction 

The fuzzy set (FS) theory which is proposed by Zadeh [18] is a practical approach that is widely used to 

capture linguistic uncertainty in optimization problems such that it assigns to each element a degree of 

membership. Sometimes because of uncertainty determining the degree of membership isn’t possible. For this 

reason, Zadeh [19] proposed Interval Fuzzy Sets (IFSs) to express the uncertainty in the membership function. 

An interval-valued fuzzy set is a fuzzy set in which the membership degree is assumed to belong to an interval. 

Attanasov in [2] has presented an extension of classical fuzzy sets, that is, the so-called intuitionistic fuzzy sets 

(IFSs), such it assigns the degrees of membership (truth-membership) and non-membership (falsity-

membership) to each element. In this respect, Atanasov [3] by extending the membership (truth-membership) 

and non-membership (falsity-membership) functions to the interval numbers in proposed the interval-valued 

intuitionistic fuzzy set (IVIFS). Smarandache [14, 16] introduced neutrosophy, which is the study of neutralities 

as an extension of dialectics. 
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Mohamed et al. [5] by introducing a new score function, proposed a novel method for neutrosophic integer 

programming problems. Neutrosophic is the derivative of neutrosophy, and it includes neutrosophic set, 

neutrosophic probability, neutrosophic statistics, and neutrosophic logic. Neutrosophic theory means 

neutrosophy applied in many fields of sciences to solve problems related to indeterminacy. Although 

intuitionistic fuzzy sets can only handle incomplete information not indeterminate, the neutrosophic set can 

handle incomplete and indeterminate information [15]. Neutrosophic sets are characterized by three independent 

degrees, namely truth-membership degree (T), indeterminacy-membership degree(I), and falsity-membership 

degree (F). The decision-makers in the neutrosophic set want to increase the degree of truth-membership and 

decrease indeterminacy and falsity membership degrees. Wang et al. in [17] proposed interval neutrosophic sets 

(INSs) where the degrees of truth, indeterminacy, and falsity memberships were extended to a subinterval of

[0,1] . 

This paper presents a new model and method for solving Interval Neutrosophic Integer Programming (INIP) 

problems. Using a score function, we convert INIP into crisp problems. Integer programming problems can be 

defined as linear programming problems with integer restrictions on decision variables. When some but not all 

decision variables are restricted to be an integer, this problem is called a mixed-integer problem, and when all 

decision variables are integers, it's a pure integer program. Integer programming plays an essential role in 

supporting managerial decisions. In integer programming problems, the decision-maker may not be able to 

specify the objective function and/or constraints functions precisely. The rest of this paper is organized as 

follows: Section 2 presents some definitions of neutrosophic sets, single value neutrosophic sets, and interval 

neutrosophic sets. Section 3 describes the formulation of INIP. In Section 4, we propose our method for solving 

INIP problems. In Section 5, a numerical example is presented. Finally, the conclusions are discussed in section 

6.  

2. Preliminaries 

 

This section briefly reviews some necessary backgrounds and preliminaries of Neutrosophic sets, single-

valued Neutrosophic sets, and interval neutrosophic sets.  

Definition 1. [4,6] A Neutrosophic Set (NS) N  in a domain X (finite universe of objectives) can be 

represented by : 0 ,1 ,NT X       : 0 ,1NI X      and : 0 ,1NF X       such that 0 ( )NT x 

( ) ( ) 3N NI x F x    .x X  Where ( ),NT x  ( )NI x  and ( )NF x  denote the truth, indeterminacy, and falsity 

membership functions, respectively.  

Definition  2.  [1,8]  A single-valued neutrosophic set (SVNS)  N  in a domain X (finite universe of 

objectives) can be denoted as  { , ( ), ( ), ( ); },N N NN x T x I x F x x X  where : [0,1],NT X  : [0,1]NI X   

and : [0,1]NF X   are three maps in X  that satisfy the condition 0 ( ) ( ) ( ) 3N N NT x I x F x     .x X   

The numbers ( ),  ( )N NT x I x  and ( ),NF x are respectively the degrees of truth, indeterminacy and falsity 

membership of element x to N . 

Definition 3. [6,9] The addition and subtraction operations between two SVNNs such as  

[( , , ); , , ]l m u

N N NN a a a     and [( , , ); , , ]l m u

M M MM b b b     could be defined as:   

 [( , , ); , , ],l l m m u u

N M N M N MN M a b a b a b                                                                       (1) 

[( , , ); , , ],l l m m u u

N M N M N MN M a b a b a b                                                                      (2) 
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Furthermore, the normal and scalar multiplications are defined as: 

[( , , ); , , ],l l m m u u

N M N M N MNM a b a b a b                                                                                      (3) 

[( , , ); , , ],                   0,
   

[( , , ); , , ],                   0.

l m u

N N N

u m l

N N N

ka ka ka k
kN

ka ka ka k

  

  

 
 


                                                                               (4) 

Definition 4. [9,10] Let N and M be two NNs. The ranking orders of these two numbers will be as: 

 If ( ) ( )R N R M   then N is bigger than ,M  

 If ( ) ( )R N R M   then N is smaller than ,M                                                                        

 If ( ) ( )R N R M   then N is equal to .M  

Definition 5.  [13,11] Let X  be a space of discourse, an interval neutrosophic set (INS) N  through X  taking 

the form { , ( ), ( ), ( );  }N N NN x T x I x F x x X 
 
where ( ), ( ), ( ) [0,1]N N NT x I x F x   and 0 ( )NSupT x  

( ) ( ) 3N NSupI x SupF x    for all .x X ( ),NT x ( )NI x and ( )NF x  represent truth membership, 

indeterminacy membership, and falsity membership of x to ,N  respectively. 

Remark 1:  An INS [( , , );[ , ],[ , ],[ , ]]l m u l u l u l u

N N N N N NN a a a        will be reduced to the NS if ,l u

N N 

l u

N N   and 
l u

N N  . 

Definition 6. [7,12] Let [( , , );[ , ],[ , ],[ , ]]l m u l u l u l u

N N N N N NN a a a        and [( , , );[ , ],l m u l u

M MM b b b  

[ , ],[ , ]]l u l u

M M M M     are two INNs. The addition and subtraction operations for these two INNs are defined as 

follows: 

[( , , );[ , ],[ , ],[ , ]],l l m m u u l l l l u u u u l l u u l l u u

N M N M N M N M N M N M N M N MN M a b a b a b                          

[( , , );[ , ],

[ , ],[ , ]].

l l m m u u l l l l u u u u

N M N M N M N M

l l u u l l u u

N M N M N M N M

N M a b a b a b        

       

        

 
             (5) 

 

3. Interval Neutrosophic Integer Programming  

An integer programming problem with neutrosophic factors is presented as bellows: 

 

 

                                                                                                                   (6)                                                            

 

 

 where  jx is an integer variable and ,j ijc a , and ib  represented the neutrosophic numbers.  

1

1

 Z= ,

. . ,    =1,2,..., ,

        0,

       =1,2,..., .

n

j j

j

n

ij j i

j

j

Max c x

s t a x b i m

x

j n
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In order to model these kinds of problems, we present the truth, indeterminacy, and falsity membership 

functions  for an interval neutrosophic number (INN) N as follows (Figure 1): 

( )
,                  ,

( )
( ) ,                 ,

    

     0,                                          otherwise,

l l
l mN

m l

u u
L m uN

N u m

x a h a x
a x a

a a

a x h x a
T x a x a

a a

   
 





  
  







                                                                                   (7) 

( )
,                  ,

( )
( ) ,                 ,

    

     ,                                        otherwise,,

l m
l mN

m l

u m
U m uN
N u m

N

x a h a x
a x a

a a

a x h x a
T x a x a

a a

h

   
 





  
  







                                                                                (8) 

where ( ) [ ( ), ( )],L U

N N NT x T x T x  

( )
,                  (1 ) ,

( )
( ) ,                 (1 ) ,

    

     ,                                           otherwise,

m m
l m mN

m l

m m
L m m uN
N u m

a x h x a
a a x a

a a

x a h a x
I x a x a a

a a

 

 



   
   





  
    







                                                            (9) 
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( )
,                  (1 ) ,

( )
( ) ,                 (1 ) ,

    

     1 ,                                      otherwise,

m l
l m mN

m l

m u
U m m uN
N u m

a x h x a
a a x a

a a

x a h a x
I x a x a a

a a

 

 



   
   





  
    








                                                           

(10) 

where ( ) [ ( ), ( )],L U

N N NI x I x I x
 

( )
,                  ,

( )
( ) ,                 ,

    

  1 ,                                         otherwise,

m m
l mN

m l

m m
L m uN

N u m

N

a x h x a
a x a

a a

x a h a x
F x a x a

a a

h

   
 





  
  








                                                                              (11)
 

( )
 ,                  ,

( )
( ) ,                 ,

    

  1,                                              otherwise,

m l
l mN

m l

m u
U m uN
N u m

a x h x a
a x a

a a

x a h a x
F x a x a

a a

   
 





  
  







                                                                              (12) 

where ( ) [ ( ), ( )]L U

N N NF x F x F x  and ( ) ( )U L

N N Nh T x T x   such that (0,1)   and .Nh 
 

The maximum value of the objective function for truth membership and the minimum values of the 

objective function for indeterminacy and falsity memberships can obtain as follows: 

*

max max{ ( )}if f x  and
*

min min{ ( )}if f x for  ( 1,..., )i n  also 
max max max min( )F T T Tf f P f f   , 

min min

F Tf f  

and 
max max min min max min, ( )I I I I T Tf f f f K f f        where P  and K are real numbers in (0,1). 
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Figure 1. Truth, indeterminacy and falsity membership functions of INN. 

Nevertheless, the neutrosophic optimize integer programming problem can be written as follow:  

 

 
 
 
 
 

                      

                                                                                                            (13) 

 

 

 

 

 

The problem (13) can be written to the equivalent form as follows: 

max ,min ,min ,

. .

     ( ),

     ( ),

     ( ),

      ,

      ,

      0 3,

      0,   integer.

s t

T x

I x

F x

x is

  







 

 

  











   



                       (14)               

  where represented the minimal degree of acceptation,   represented the maximal rejection degree and   

represented the maximal degree of indeterminacy. 

 

 The model (14) can be written to another type of neutrosophic optimization model where formulated as 

follow: 

 

max ( ),

min ( ),

min ( ),

. .

       ( ) ( ),

       ( ) ( ),

        0 ( ) ( ) ( ) 3,

       ( ), ( ), ( ) 0,

        0 is integer.

T x

I x

F x

s t

T x F x

T x I x

T x I x F x

T x I x F x

x
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max( ),

. .

     ( ),

    ( ),

    ( ),

    ,

    ,

   0 3,

   , , 0,

   0 is integer.

s t

T x

I x

F x

x

  







 

 

  

  

 











   





                   (15) 

Model (15) is equivalent with the following one: 

min(1 ) ,

. t .

     ( ),

    ( ),

    ( ),

    ,

    ,

   0 3,

   , , 0,

   0 is integer.

s

T x

I x

F x

x

  







 

 

  

  

  











   





                                                                                                                                     (16) 

 

4. The new method for solving Interval Neutrosophic Integer Programming problems 

In this section we introduced a new approach to find the optimal solution for solving INIP problems.at the 

first by using of a score function we convert INIP problem into crisp model and then using of Branch and 

Bound Algorithm solve it same as the classic integer programming problem. The algorithm of the proposed 

method is presented as follows: 

Step 1: In order to compare any two triangular INNs based on the proposed ranking function, let 

[( , , );[ , ],[ , ],[ , ]]l m u l u l u l u

N N N N N NN a a a      
 
be a symmetric interval neutrosophic number, where 

[ , ],[ , ]l u l u

N N N N    and[ , ]l u

N N  are respectively the truth, indeterminacy, and falsity membership degrees of 

N . Also ,l ma a and 
ua are respectively the lower, median, and upper bounds for N . 

 The ranking function for the interval neutrosophic number N  will be defined as follows:  

1
( ) [ 2 ] ( ),

4

l u m

N N NL N a a a                                                                                                           (17)                                                                               
                                                                                        

 

where  ,
2

l u

N N
N

 



  

2

l u

N N
N

 



  and .

2

l u

N N
N

 



  Moreover, we have : 
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0N     if    
2

0.
4

l u ma a a 
  

Step 2: Create the decision set which include the highest degree of truth-membership and the least degree of 

falsity and indeterminacy memberships. 

Step 3: Find the optimal solution to the linear programming model with the integer restrictions relaxed.  

Step 4: At the previous node let the relaxed solution be the upper bound and the rounded-down integer solution 

be the lower bound. 

 Step 5:  Select the variable with the greatest fractional part for branching. Create two new constraints for this 

variable reflecting the partitioned integer values. The result will be a new ≤ constraint and a new≥ constraint.  

Step6:  Create two new nodes, one for the ≥ constraint and one for the ≤ constraint.  

Step 7:  Solve the relaxed linear programming model with the new constraint added at each of these nodes. 

Step 8:  The relaxed solution is the upper bound at each node, and the existing maximum integer solution is the 

lower bound. 

Step 9:  If the process produces a feasible integer solution with the greatest upper bound of these nodes. Integer 

solution (at any node) is the lower bound value of any ending node; the optimal integer solution has been 

reached. If feasible integer solution doses not emerge, branch from the node with the greatest upper bound.  

Step 10:  Return to step 5. 

For a minimization model, relaxed solutions are rounded up and upper and lower bounds are reversed. 

 

5. Numerical example 

A mobile factory produces four basic units, such as Camera, Speaker, Ram, and Screen. All productions 

have to get through four parts. These four parts include Design, Fabrication, Probe, and Assembly. The 

favorable time for each unit manufactured and its profit is presented in Table 1. The minimum production 

amount for supplementing monthly products is presented in Table 2. The purpose of the company is producing 

products in this limit for maximizing the general profits.   

 

Table 1. Departments and profits 

Products         Design             Fabrication              Probe                          Assembly                Unit profit 

 1P     0.2 0.5                       0.1                                  0.1                            14$  

 2P      0.5                         3                     2                                   0.6                             7$  

3P                    0.4        4                           4                                    0.8                            5$  

4P                     1       2     0.2                                0.2                            8$   
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Table 2. Time capacity and minimum production level 

Sector                   Capacity (in hours)                    Products                            Minimum production level     

Design                     1300                                        1P                                                   100  

Fabrication           3340                                        2P                                               280  

Probe                       1800                                        3P                                               194  

Assembly                2100                    4P                                                   400  

 

The neutrosophic values for each INN in the previous tables are represented as follows: 

14 (12,14,16),[0.3,0.7],[0.2,0.8],[0.2,0.9] ,

7 (2,7,12),[0.1,0.6],[0.4,0.7],[0.6,0.8] ,




 

 

 

 

5 (4,5,6),[0.2,0.5],[0.4,0.9],[0.3,0.4] ,

8 (3,8,13),[0.2,0.5],[0.3,0.8],[0.6,0.9] ,

1300 (1000,1300,1600),[0.1,0.6],[0.2,0.7],[0.3,0.8] ,

3340 (3215,3340,3465),[0.7,0.9],[0.2,0.7],[0.4,0.9] ,

1800 (1390









 ,1800,2210),[0.4,1],[0.2,0.6],[0.1,0.2] ,

2100 (1818,2100,2510),[0.3,0.7],[0.1,0.6],[0.4,0.8] ,

100 (99,100,101),[0.1,0.7],[0.2,0.6],[0.3,0.4] ,

280 (230,280,330),[0.7,0.9],[0.1,0.2],[0.2,0.5] ,

194 (184,







 194,204),[0.1,0.6],[0.3,0.7],[0.1,0.7] ,

400 (200,400,600),[0.1,0.4],[0.2,0.6],[0.4,0.8]

 

Let 1 2 3, ,x x x  and 4x  represent the number of produced Cameras, Speakers, Rams, and Screens, 

respectively. The above problem can be formulated as follows: 
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1

 Z 14 7 5 8

. .

       0.2 0.5 0.4 1 1300,     

       0.5 3 4 2 3340,  

       0.1 2 4 0.2 1800,      

       0.1 0.6 0.8 0.2 2100,  

        100,

 

Max x x x x

s t

x x x x

x x x x

x x x x

x x x x

x

   

   

   

   

   



2

3

4

1 2 3

       280,

        194,

       400,

       , , 0.

x

x

x

x x x









 

By applying  the proposed ranking function in Equation (17) the following crisp model can be obtained: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1

  13.45 6.1 4.4 7.05

. .

       0.2 0.5 0.4 1 1299.35,     

       0.5 3 4 2 3339.7,  

       0.1 2 4 0.2 1800.15,      

       0.1 0.6 0.8 0.2 2099.55,  

     9

Max Z x x x x

s t

x x x x

x x x x

x x x x

x x x x

x

   

   

   

   

   



2

9.65,

        280.3,x 

 

3

4

1 2 3 4

        193.45,

        399.25,

        , , , 0.

x

x

x x x x







 

By using the standard integer programming method, the results of the above problem are obtained as 

follows: 
* (1841,281,194,400),x  and 

* 30299.Z   

4. Conclusion 

Since many real-world problems are too complex to be defined in precise terms, indeterminacy is often 

involved in any engineering design process.  Neutrosophic as an extension of FS and IFS is an efficient tool to 

cope with indeterminacy. In this research, we first proposed an INIP model and then proposed a new method for 

solving INIP problems based on a novel ordering approach. To increase the acceptance degree and reduce the 

degrees of indeterminacy and rejection, we proposed a ranking function capable of converting every triangular 

interval neutrosophic number to its equivalent crisp value. Subsequently, every INIP problem could be 

converted to the crisp model where can be solved by standard methods easily. In particular, the illustrative 

example explored to solve the mentioned problem based on the conventional approach. 
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