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A R T I C L E  I N F O  A B S T R A C T 

Data Envelopment Analysis (DEA) is a widely used technique for measuring 

the relative efficiencies of Decision Making Units (DMUs) with multiple inputs 

and multiple outputs. However, Undesirable Outputs (UO) may be present in 

the production process which needs to be minimized. In real-world problems, 

the observed values of the input and output data are often vague or random. 

Indeed, Decision Makers (DMs) may encounter a hybrid uncertain environment 

where fuzziness and randomness coexist in a problem. This paper proposes 

fuzzy stochastic DEA model with undesirable outputs. The extensions to the 

fuzzy-stochastic environment sometimes may be laid to disregard some of the 

properties in DEA models such as linearity and feasibility. In this way, we 

apply a new version of DEA-UO model according to the probability-possibility 

approach to propose a linear and feasible model in deterministic form. A 

numerical example is presented to illustrate the features and the applicability of 

the proposed models. 
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1. Introduction 

Data Envelopment Analysis (DEA), initially introduced by Charnes et al. [2], is a well-known non-parametric 

methodology for computing the relative efficiency of a set of homogeneous units, named as Decision Making Units 

(DMU). DEA generalizes the intuitive single-input single-output ratio efficiency measurement into a multiple-input 

multiple-output model by using a ratio of the weighted sum of outputs to the weighted sum of inputs. It computes 

scalar efficiency scores with a range of zero to one that determine efficient level or position for each DMU under 

evaluation among all DMUs. A DMU is said to be efficient if its efficiency score is equal to one, otherwise it is said 

to be inefficient. The basic DEA models were initially formulated only for desirable inputs and outputs. However, 

in real life problems, undesirable outputs may be present in the production process which also needs to be 
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minimized. One of the direct approaches to deal with undesirable outputs is to treat all the desirable and undesirable 

outputs as the weighted sum, but using negative weights for the undesirable outputs.  

Hatami-Marbini et al. [12] classified the fuzzy DEA methods in the literature into five general groups, the 

tolerance approach (Sengupta [36], Triantis and Girod [41]), the α-level based approach, the fuzzy ranking approach 

(Guo and Tanaka [11], Hatami-Marbini et al. [13]), the possibility approach (Lertworasirikul et al. [21]), and the 

fuzzy arithmetic approach (Wang et al. [44]). Among these approaches, the α-level based approach is probably the 

most popular fuzzy DEA model in the literature. This approach generally tries to transform the FDEA model into a 

pair of parametric programs for each α-level. Kao and Liu [15], one of the most cited studies in the α-level 

approach’s category, used Chen and Klein [3] method for ranking fuzzy numbers to convert the FDEA model to a 

pair of parametric mathematical programs for the given level of α. Saati et al. [34] proposed a fuzzy CCR model as 

a possibilistic programming problem and changed it into an interval programming problem by means of the α-level 

based approach. Puri and Yadav [32] applied the suggested methodology by Saati et al. [34] to solve fuzzy DEA 

model with undesirable outputs. Khanjani et al. [16] proposed fuzzy free disposal hull models under possibility and 

credibility measures. Momeni et al. [26] used fuzzy DEA models to address the impreciseness and ambiguity 

associated with the input and output data in supply chain performance evaluation problems. Payan [31] evaluated 

the performance of DMUs with fuzzy data by using the common set of weights based on a linear program.  

In order to evaluate the efficiency of DMUs with the deterministic inputs and the random outputs, Land et al. 

[20] extended the chance constrained DEA model. Olesen and Petersen [28] developed the chance constrained 

programming (CCP) model for efficiency evaluation using a piecewise linear envelopment of confidence regions 

for observed stochastic multiple-input multiple-output combinations in DEA. Huang and Li [14] developed 

stochastic models in DEA by taking into account the possibility of random variations in input-output data. Cooper et 

al. [5], Li [21], and Bruni et al. [1] utilized joint chance constraints to extend the concept of stochastic efficiency. 

Cooper et al. [4] used chance-constrained programming for extending congestion DEA models. Tsionas and 

Papadakis [40] developed Bayesian inference techniques in chance-constrained DEA models. Udhayakumar et al. 

[43] used a genetic algorithm to solve the chance-constrained DEA models involving the concept of satisficing. 

Also some of the banking applications in relation to satisficing DEA can be found in Udhayakumar et al. [43] and 

Tsolas and Charles [42]. Farnoosh et al. [9] proposed chance-constrained FDH model with random input and 

random output. Wu et al. [45] proposed a stochastic DEA model by considering undesirable outputs with weak 

disposability. This model not only deals with the existence of random errors in the collected data, but also depicts 

the production rules uncovered by weak disposability of the undesirable outputs. A review of stochastic DEA 

models can be found in a recent work by Olesen and Petersen [29]. 

However, in the real-world problems decision makers may need to base decisions on information which are 

both fuzzily imprecise and probabilistically uncertain. Kwakernaak [18, 19] introduced the concept of fuzzy random 

variable, and then this idea enhanced by a number of researchers in the literature (Feng and Liu [10], Liu and Liu 

[23], Liu [24], Qin and Liu [33]). Qin and Liu [33] developed a fuzzy random DEA (FRDEA) model where 

randomness and fuzziness exist simultaneously. The authors characterized the fuzzy random data with known 

possibility and probability distributions. Tavana et al. [38] also introduced three different FDEA models consisting 

of probability-possibility, probability-necessity and probability-credibility constraints in which input and output 

data entailed fuzziness and randomness at the same time. Also, Tavana et al. [37] provided a chance-constrained 

DEA model with random fuzzy inputs and outputs with Poisson, uniform and normal distributions. After that, 

Tavana et al. [39] proposed DEA models with birandom input-output. Khanjani et al. [17] proposed fuzzy rough 

DEA models based on the expected value and possibility approaches. Paryab et al. [30] proposed DEA models 

using a bi-fuzzy data based possibility approach. However, there has been no attempt to study randomness and 

roughness simultaneously in DEA problems. To deal with the uncertain environments, especially hybrid 

environments, the DEA model may disorder its structure when the uncertain parameter of input and output exist. 

For example, the method proposed by Tavana et al. [39] does not compute the efficiency scores of DMUs in the 

range of zero to one for input-oriented DEA models. This study tries to overcome the shortcomings of the existing 

approach. Nasseri et al. [27] proposed a DEA model with undesirable output consisting of probability-possibility, 
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probability-necessity and probability-credibility constraints. Ebrahimnejad et al. [7] formulated a deterministic 

linear model according to the probability–possibility approach for solving input-oriented fuzzy stochastic DEA 

model. Ebrahimnejad et al. [8] extended the concept of a normal distribution for fuzzy stochastic variables and 

propose a DEA model for problems characterized by fuzzy stochastic variables. To sum up with all the above 

aspects, the achievement of the present study is threefold: (1) to formulate a linear and feasible model with the 

efficiency scores of DUMs with the range of zero to one, (2) to propose a new version of the CCR-DEA model to 

achieve a linear and feasible model, and (3) to use a probability possibility approach for solving the uncertainty 

model. 

The rest of this paper is organized as follows: In Section 2, the basic preliminaries with fuzzy sets and 

possibility set are given. Section 3 formulates the conventional DEA model in the presence of undesirable outputs. 

A probability- possibility approach is proposed for solving fuzzy stochastics DEA model in Section 4. A numerical 

example is given to illustrate the proposed approach in Section 5. Finally, Section 6 concludes the paper. 

 

2. Preliminaries 

In this section, we review some necessary concepts related to the fuzzy set theory and probability theory, which 

will be used in the rest of paper [6, 46, 47]. 

Definition 1: A fuzzy set A , defined on universal set X , is given by a set of ordered pairs 

={( , ( )) | }
A

A x x x X   where ( )
A

x  gives the membership grade of the element x  in the set A and is called 

membership function. 

Definition 2 : A fuzzy set A , defined on universal set of real numbers R , is said to be a fuzzy number if its 

membership function has the following characteristics:  

1) A  is convex, i.e. , , [0,1], ( (1 ) ) { ( ), ( )}     
A A A

x y R x y min x y       .  

2) A  is normal, i.e. ; ( ) = 1
A

x R x  .  

3) 
A

  is piecewise continuous.  

Definition 3: A function :[0, ) [0,1]L    (or :[0, ) [0,1]R   ) is said to be reference function of fuzzy number if 

and only if (0) = 1L (or (0) = 1R ) and L or R is non-increasing on [0, ) .  

Definition 4 [6]: A fuzzy number = ( , , )  LRA m  is said to be an LR fuzzy number, if its membership function is 

given by:  

( ), for , > 0,

( ) = 1,  for ,

( ), for , > 0.









A

m x
L x m

x x m

x n
R x n

 





 



 

Remark 1: If ( ) = ( ) = {0,1 }L x R x max x  then an LR fuzzy number = ( , , )LRA m    is said to be a triangular fuzzy 

number and is denoted by = ( , , ) A m . 

Definition 5: Let = ( , , )LRA m   be an LR fuzzy number and be a real number in the interval [0,1] then the 

crisp set, 1 1= { : ( ) } = [ , ] [ ( ), ( )]      L R

A
A x R x A A m L m R     is said to be -cut of A . 

Definition 6: Let 1 1 1 1( , , )  LRA m  and 2 2 2 2( , , )  LRA m be two LR  fuzzy numbers and k be a non-zero real 

number. Then the exact formula for the extended addition and the scalar multiplication are defined as follows: 

i) 1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) ( , , )       LR LR LRm m m m      

ii) 1 1 1 1 1 10, ( , , ) ( , , )   LR LRk k m km k k   

iii) 1 1 1 1 1 10, ( , , ) ( , , )   LR LRk k m km k k     
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Definition 7: (Extension Principle) This principle allows the generalization of crisp mathematical concepts in 

fuzzy frameworks. For any function f, mapping points in set X to points in set Y, and any fuzzy set ( )A P X  where

1 1 2 2
( ) ( ) ... ( )  

n n
A x x x    , this principle expresses: 

       1 1 2 2 1 1 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )     

n n n n
f A f x x x f x f x f x        . 

Definition 8: Let   ,P ,Pos  be a possibility space where   is a non-empty set involving all possible events, 

and  P  is the power set of  . For every ( )A P , there is a non-negative number  Pos A , so-called a possibility 

measure, satisfying the following axioms: 

(i) ( ) 0, ( ) 1P P   , 

(ii) for every  A,B P  , A B  implies    Pos A Pos B , 

(iii) for every subset{ : } ( )wA w W P   , ( ) ( )w w w wPos A Sup Pos A . 

The elements of  P  are also called fuzzy events. 

Definition 9 (Liu and Liu, [24]): Let   be a fuzzy variable on a possibility space   ,P ,Pos  . The possibility, 

necessity and credibility of the fuzzy event r  , where r is any real number, is defined as follows:  

   
t r

Pos r Sup t . 


   

  1
t r

Nes r Sup ( t ), 


  

 

     
1

2
Cr r Pos r Nec r .        

 
      where  : 0,1

A
R   is the membership function of   and r is a real number. Note here that 

   1 .Cr r Cr r    
 

Definition 10 (Liu and Liu, [25]): Let  , ,Pr   be a probability space where   is a sample space,   is the s-

algebra of subsets of   (i.e., the set of all possible potentially interesting events), and Pr is a probability measure 

on .  A fuzzy random variable (FRV) is a function   from a probability space  , ,Pr  to the set of fuzzy 

variables such that for every Borel set B of  ,   ( ),Pos w w B  is a measurable function of  . 

Definition 11 (Liu and Liu, [24]): A fuzzy random vector is a map from a sample space to a colleation of fuzzy 

vectors, 1 2( , ,..., ): n
n vF      , such that  for any closed subset F n ,  ( , ) FPos       is a measurable 

fuction of  , i.e., for any [0,1]t  , we have   ( , ) .Pos F t A     


    In the case of n=1,  is called 

a fuzzy random variable.  

Definition 12 (Fuzzy Random Arithmetic): Let 1  and 2  be two FRVs with the probability spaces  1 1 1, ,Pr 

and  2 2 2, ,Pr  , respectively. Then 2 2     is defined as  1 2 1 1 2 2, ( ) ( )         for any  1 2 1 2,    , 

where  1 2 1 2 1 2, ,Pr Pr      is the corresponding probability space. 

Definition 13: Let  1 2, ,..., n    be a fuzzy random vector, and : nf    be a continuous function. Then ( )f   

will be a fuzzy random variable. 

Definition 14: An LR fuzzy random variable will be denoted by ( )  , where  and described by the following 

membership function:

  
 

 
 

 

 
 

, ,

( ) 1 ,

, .

m x
L x m

x x m

x m
R x m

 






 






  
   

  


 


 
   

 

                                                                                                                       (1) 
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where ( )m  is the normally distributed random variable. 

3. Conventional DEA-UO model with crisp data 

Consider the performance of a homogeneous set of n DMUs ; 1,... ),( jDMU j n  with multiple inputs and 

multiple outputs is to be evaluated. A production process with m inputs 1,.. , )( .ijx i m to yield s outputs in which 

1s outputs are desirable  11,...,g

rky r s  and 2s  outputs are undesirable  21,...,  b

pky p s such that 1 2s s s  .Several 

approaches have been developed to deal with undesirable outputs in DEA model. Among these, we preferred Puri 

and Yadav [32] approach to suggest a modified version such that the efficiency ratio for any DMU is guaranteed to 

be positive. Their proposed model is as follows: 

 

1 2

1 2

1 2

1 1

1

1 1

1 1 1

max

1

0,

0,

0 , 0 , 0 .

r rk p pk

r rj p pj

r rk p pk

r p

s s
g g b b

r p

m

i ik

i

s s
g g b b

r p

s s m
g g b b

i ik

r p i

g b

i

u y u y

v x

u y u y j

u y u y v x j

u r u p v i




 



 

  

 



  

   

     

 



 

  

                                                                                             (2) 

      where
ik

x ,
rk

g
y , and

pk

by are the inputs, desirable outputs and undesirable outputs of target DMUk, respectively. 

Obviously, from model (2), it can be seen that 1  . Hence, we add this constraint to model (2) to get a 

equivalence model (3) as follows: 

1 2

1 2

1 2

1 1

1

1 1

1 1 1

max

1

1

0,

0,

0 , 0 , 0

r rk p pk

r rj p pj

r rk p pk

r p

s s
g g b b

r p

m

i ik

i

s s
g g b b

r p

s s m
g g b b

i ik

r p i

g b

i

u y u y

v x

u y u y j

u y u y v x j

u r u p v i






 



 

  



 



  

   

     

 



 

  

                                                                                               (3) 

The main aim of construction model (3) is to enhance the ability of model (2) in uncertain environment to 

preserve the DEA structure. The reason of this modification is to keep the efficiency values of original model (2) in 

fuzzy stochastic environment in the range of zero and one when it is transformed into a deterministic one. 

This is ignorable, in real life problems, which certain mathematics is not sufficient to model a complex system. 

In DEA system, input and output parameters may be faced with fuzziness and randomness together. In the present 

study, to deal with such situations, we extend the DEA-UO model to the fuzzy stochastic DEA (FSDEA) model 

with undesirable fuzzy stochastic outputs (FSDEA-UFSO).  
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4. Fuzzy Stochastic DEA-UO model: A probability- possibility approach  

Consider n DMUs, indexed by 1,2, ,j n  each of which consumes m fuzzy random inputs, denoted by

ij ( , , ) , 1,...,
LRij ij ijx x x x i m    to produce s1+s2 fuzzy random outputs, denoted by , ,

1( , , ) , 1,...,
LR

g g g g
rj rj rj rjy y y y r s   as desirable 

outputs and , ,
2( , , ) , 1,...,

LR

b b b b
pj pj pj pjy y y y p s    as undesirable outputs. Let the random parameters

ij
x ,

rj

gy ,
pj

by  be 

normally distributed as ( , )ij ijN x  , g( , )
rj rj

gN y  , b( , )
pj pj

bN y  , respectively, where
ij

x ,
g

rj
y ,

b

pj
y and

ij , g

rj
 , b

pj
 are the 

mean value and the variance for 
ij

x , 
rj

g
y ,

pj

by , respectively.  

The chance-constrained programming (CCP) developed by Cooper et al. [4] is a stochastic optimization 

approach suitable for solving optimization problems with uncertain parameters. Building on CCP and possibility 

theory as the principal techniques, the following probability-possibility CCR model is proposed: 

 

         

1 2

1 2

1 2

1 1

1

1 1 1

1 1

max

. .

1

ˆ ˆ

ˆ 1

( )

ˆ ˆ ˆ 0   j

ˆ ˆ 0   j

pkrk

pjrj

pjrj

s s
g b

r p

m

ij

i

s s m
g b

ij

r p i

s s
g b

r p

s t

y y

x

i

y y x

y y






 



  

 




 




 




    


  



 



  

 

                                                                    

           (4)

 

 

 

 

max

ˆ ,   , j, ( )

ˆ ,   , j, ( )

ˆ ,    , , ( )

, , 0.

r rj rj r rj

p pj pj p pj

pr

g g g g g

b b b b b

i ij ij i ij

g b
i

Pr Pos u y y u y r ii

Pr Pos u y y u y p iii

Pr Pos v x x v x i j iv

u u v



 

 

 

     
  

     
  

     
 



 

      where   and  0,1   in constraint (ii), (iii) and (iv) are the predetermined thresholds defined by the DM.  

Pos[·] and Pr[·] in Model (4) denote the possibility and the probability of [·] event.  

In addition, we presume that the fuzzy stochastic input ijx
 
and the fuzzy stochastic output 

rj

g
y  and 

pj

by are 

characterized, respectively, by the following two membership functions: 
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,

( )

,

ij

ij

ij

ij

x

ij

ij

ij

x t
L t x

x
t

t x
R t x

x







  
  

   
 

 
   

  

                                                                                               (5) 

and 

g

, ,

yy

, ,

, ,

( ) , ( )

, ,

b

rjrj

g b

rj rjg b

rj rjg b

rj rj

g b

rj rjg b

rj rjg b

rj rj

y t y t
L t y L t y

y y
t t

t y t y
R t y R t y

y y

 

 

 

     
     

         
  

     
        

     

                                                               (6) 

       where 2( , )ij ij ijx N x 
 
and 2 2( , ), ( , )

pjrj

gg b b
rj rj pj pjy N y y N y  . 

In order to solve the probability-possibility constrained programming Model (4), we convert the constraints in 

this model into their respective crisp equivalents. Thereby, Theorem 1 and Lemma 1 proposed, respectively, by Liu 

and Liu [25] and Sakawa [35] play a pivotal role in solving the fuzziness of proposed Model (4). 

Theorem 1: Let   be a fuzzy random vector : n
jg   are real-valued continuous functions 1,...,r p . Then the 

possibility   ( ) 0, 1,...,jPos g w j n   is a random variable. 

Lemma 1: Let 1  and 2  be two independent fuzzy numbers with continuous membership functions. For a given 

confidence level [0,1] ,  1 2Pos      if and only if 1, 2,
R R
   , where 1,

L
 , 1,

R
  and 2,

L
 , 2,

R
  are the left 

and the right side extreme points of the α-level sets 1  and 2 , respectively, and 1 2{ }Pos  
 
present the degree of 

possibility.  

In what follows we show that the probability-possibility CCR model (4) can be equivalently transformed into a 

linear programing model.  

The constraint (ii) in Model (4),  ˆ ,r rj rj r rjPr Pos u y y u y      
 

 can be transformed into the following two 

constraints: 

 ˆ ,r rj rjPr Pos u y y     
 

 

 ˆ
rj r rjPr Pos y u y     

 
. 

 

These constraints can be rewritten as the following constraints based on Lemma 1: 

  1
ˆ ˆ ˆ

( )
Lrj rj rj

rj rj rj rj
r r r

y y y
Pr Pos y Pr y Pr y L y

u u u




    

      
                    

       

 

  1
ˆ ˆ ˆ

( )
Rrj rj rj

rj rj rj rj
r r r

y y y
Pr Pos y Pr y Pr y R y

u u u




    

      
                    

       
 

In a similar way, constraint (iii) in Model (4),  ˆ
i ij ij i ijPr Pos v x x v x      

 
, can be rewritten as the 

following constraints: 

  1
ˆ ˆ ˆ

( )
Lij ij ij

ij ij ij rj
i i i

x x x
Pr Pos x Pr x Pr x L x

v v v




    

      
                    

       

 

  1
ˆ ˆ ˆ

( )
Rij ij ij

ij ij ij ij
i i i

x x x
Pr Pos x Pr x Pr x R x

v v v




    

      
                    

       

 

Therefore, Model (4) can be reformulated as follows:  
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1 2

1 2

1 2

1 1

1

1 1 1

1 1

max

. .

1

ˆ ˆ

ˆ 1

ˆ ˆ ˆ 0   j

ˆ ˆ 0   j

pkrk

pjrj

pjrj

s s
g b

r p

m

ij

i

s s m
g b

ij

r p i

s s
g b

r p

s t

y y

x

y y x

y y
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1 , 1 ,

1 , 1 ,

1 1

ˆ
( ) ( ) , , ( )

ˆ
( ) ( ) , , ( )

ˆ
( ) ( ) , , ( )   

,

rj

r

pj

r

g

g g g g
rj rj rj rjg

b

b b b b
pj pj pj pjb

p

ij

ij rj ij ij
i

g

y
Pr y L y y R y r j i

u

y
Pr y L y y R y p j ii

u

x
Pr x L x x R x i j iii

v

u

 

 

 

  

  

  

 

 

 

 
      
 
 

 
      
 
 

 
       

 

, 0.
r

b
iu v 

 

 

By the help of standardized normal distribution, (see, e.g., Cooper et al. [4]), Model (7) can be transformed into 

a deterministic linear programming model.  Consequently, let us consider the first inequality in constraint (i) of 

Model (7) as  0Pr h    where 1 ,
ˆ

( )
rj

r

g

g g
rj rj g

y
h y L y

u

   . Due to the normal distribution of ,m g
rjy , h also has 

normal distribution with the following mean and variance: 

1 , 1 ,
ˆ ˆ

( ) ( ) ( )
rj rj

rj

r r

g g

gg g g
rj rj rjg g

y y
E h E y R y y R y

u u

   
 
      
 
 

 

 1 , 2
ˆ

( ) ( )
rj

r

g

g g g

rj rj rj rjg

y
Var h Var y R y Var y

u

 
 
       
 
 

 

By standardizing the normal distribution,  0Pr h  

 

is converted to  

 

 var

E h
Pr z

h



 
 

  
 
 

 
where

 

 var

h E h
z

h


  is the standard normal random variable with zero mean and unit variance. The 

corresponding cumulative distribution function is 

( )
1

( )

E h

Var h
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and it is equal to 1 , 1
1

ˆ
( )

rj

r

g

g g
rj rj rjg

y
y R y

u


  

    , where 1
1 

   is the inverse of  at the level of . Finally, the 

deterministic version of constraint (i) in Model (7) will be as follows: 

1 , 1
1

ˆ ( ( ) ), ,
rj r rj

g g g g
rj rjy u y R y r j

  
    

 
 

 A similar procedure adopted for constraints (ii), (iii) and (iv) in Model (7) results in the following constraints:  

 
1 , 1

1

1 , 1
1

ˆ( ) : ( ( ) ), ,

ˆ( ( ) ) , ,

rj r rj

rj rj

g g g g
rj rj

g gg g
r rj rj

i y u y R y r j

u y L y y r j







 

 

 


 


    

    
  

 
1 , 1

1

1 , 1
1

ˆ( ) : ( ( ) ) , ,

ˆ( ( ) ) , ,

pj pj

pj pj

b b b b
p pj pj

b b b b
p pj pj

ii u y L y y p j

u y L y y p j







 

 

 


 


    

    
 

 
1 1

1

1 1
1

ˆ( ) : ( ( ) ), ,

ˆ( ( ) ) , ,
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As a consequence, the deterministic equivalent for Model (4) can be set as follows: 
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                                                              (8) 

The above model is obviously a linear program. It should be noted that the deterministic model obtained by 

Tavana et al. [38] is a non-linear program.   

The following theorem shows that the objective function of Model (8), ( , )kE   , is monotonously decreasing 

related to the each of and   level. 

Theorem 2: If ( , )kE   is the optimum objective function value of Model (8) then

1 2 1 2( , ) ( , )and ( , ) ( , )k k k kE E E E         where 1 2 1 2and .      

1 
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Proof. Denote the feasible space of Model (8) by 
,S 

. We need to prove that 
2 2 1 1, ,S S    .To this, consider the 

following constraint of Model (8)   
1 1 1 1

1 1)
ij ij

i ij ij ij i ij ij
ˆv ( x L ( )x x v ( x R ( )x ) 

         
                                                                                  (9) 

Let 1 1( )     . As 1 1( )   , 1( )L  and 1( )R   are decreasing function, the functions 1 1(1 ), ( )L      and 

1( )R  will be increasing. It is concluded that     
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This completes the proof. 

We present the following defiition to define the efficiecy of each DMU.  

Definition 16. For the given level and   , we define E ( ) E ( )
2

T
k k, ,


    as efficiency score of DMUk in fuzzy 

random DEA model (8). 

The corresponding model with ET
k ( , )  is as follows: 
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Theorem 3: Consider T ( , )
k

E   as the optimum objective function value of Model (10) for DMUk, then 

(a). T
1 2 1 2( , ) ( , )and ( , ) ( , )

k k k k

T T TE E E E         where 1 2 1 2and .      

(b). 0 ( , ) 1, ( 1,2, , )T
jE j n    . Also, theres exists at lease one  1,2, ,k n  suhc that ( , ) 1T

kE    . 

(c). Model (10) is feasible for any and   . 

Proof: (a). It is straightforward using Theorem 2 and Definition 16. 

(b). Obviously, it is followed immediately from the first, second and third constraints of Model (9) that ( , ) 1T
jE    . 

In what follows, we introduce such DMUk with T ( , ) 1
k

E    . According to part (a), T ( , )
k

E   is decreasing with 

respect to both and    threshold, and so T T( , ) (1,1)
k k

E E   . Let 1and =1  , then 
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1 1 11 1 0and 0 5 0L ( ) R ( ) ( . )     . Hence, we have ,
rj r rj

ij i ijˆ ˆx v x y u y  in Model (10). Therefore, The 

coorespondig model with
T (1,1)
k

E  will be as follows: 
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                                                                                                          (11)                                                                        

As seen the above model is same with DEA-UO model, and this model corresponds to a standard DEA model when 

the feasible solution u 0,b
p p   are considered. So, T (1,1)

k
E would be positve as the objective function value of a 

traditional DEA-UO model and then T T( , ) (1,1) 0
k k

E E    . On the other hand, for such DMUk, 
T (1,1)
k

E would be 

equal to 1. Hence, the relation T T1 ( , ) (1,1) 1
k k

E E    completes the proof of part (b). 

(c). Denote the feasible space of Model (10) by ,
TS  . According to the proof of Theorem 2, 1,1 ,

T TS S  . Therefore, it 

is sufficient to show that the feasible space 1,1
TS is nonempty. According to the proof of part (b), T (1,1)

k
E  is given by 

Model (11) and this model is alwasy feasible. This complets the proof of part (c). 

5.  Numerical Example 

In this section, a numerical example is considered to get a deep insight of the proposed methodology in (10). 

Table 1 shows an assessment problem with 20 DMUs in terms of two inputs, two desirable outputs and one 

undesirable output in fuzzy random environment. The entire input and output data are in terms of symmetric 

triangular fuzzy random numbers. Each input and output data is denoted by ( ( , ), )N m   , where m is the mean of the 

random center value in normal distribution and  is the left and also the right tail.  

Table 2 shows the evaluating results by Model (10) when we set the predetermined minimum probability level 

  and the predetermined acceptable level of possibility in five different threshold levels of ( = 0.25,  = 0.25), 

( = 0.5,   = 0.25), ( = 0.75,   = 0.25), ( = 0.5,   = 0.5), and ( = 0.25,   = 0.75). With the variation in the 

satisfaction levels  and   the efficient DMUs are almost DMU1, DMU6, DMU9, DMU10, DMU15, DMU16, 

and DMU18. Generally from Table 2, we can see the applicability of theorem 3 when the efficiency scores of the 

DMUs decrease by increasing the level  from(δ =0.25,γ=0.25) to (δ =0.75,  γ=0.25)and increase by decreasing of 

the level   from(δ =0.25,  γ=0.75) to(δ =0.25,  γ=0.25). 

Table 3 presents the ACE, i.e. * ( , )
k

E   for each efficient DMU at levels stated above. Also, these ACE scores 

are used to obtain a complete ranking of DMUs which is shown in Table 4. 

As seen, the complete ranking of DMUs is similar except for some relocation in surrounding DMUs. Another 

point obtained from Table 2 is the influence of the variations of stochastic level  that is more than fuzzy level  on

( , )kE   in this example. Indeed, with the same increasing in each of levels and   the objective value decreases 

further by increasing the fuzzy level  , and so the number of efficient DMUs is fall down in this case.  
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Table 1. The fuzzy random input and output data 

DMU Input 1 Input 2 Desirable Output 1 Desirable Output 2 Undesirable Output 

1 (N(363.4,1),28.3,28.3) (N(39.6,1),2.4,2.4) (N(81,1),7,7) (N(230,1),23.5,23.5) (N(58.3,1),5.3,5.3) 

2 (N(586.5,1),53.2,53.2) (N(99,1), 9, 9) (N(45,1),3,3) (N(345,1),36.5,36.5) (N(53,1),4.6,4.6) 

3 (N(540.5,1),48,48) (N(59.4,1),4.6,4.6) (N(49,1),3,3) (N(368,1),38.8,38.8) (N(79.5,1),7.9,7.9) 

4 (N(473.8,1),40,40) (N(55.8,1),5.2,5.2) (N(64,1),5,5) (N(414,1),44,44) (N(68.9,1),6.6,6.6) 

5 (N(561.2,1),50.3,50.3) (N(54,1),4,4) (N(59,1),4,4) (N(216.2,1),22,22) (N(48.4,1),4,4) 

6 (N(616.4,1) ,56.4,56.4) (N(90,1) ,8,8) (N(81,1),7,7) (N(529,1),56.7,56.7) (N(31.7,1),1.9,1.9) 

7 (N(402,1) ,38.7,38.7) (N(42.3,1) ,3.6,3.6) (N(41,1),3,3) (N(295,1),31.6,31.6) (N(72.4,1),6.8,6.8) 

8 (N(653.2,1) ,60.5,60.5) (N(68.4,1) ,5.6,5.6) (N(72.4,1),6,6) (N(349.6,1) ,36.8,36.8) (N(90.1,1),9.2,9.2) 

9 (N(347.3,1) ,26.6,26.6) (N(36,1) ,2.3,2.3) (N(90,1),8,8) (N(437,1) ,46.5,46.5) (N(100.7,1),10.5,10.5) 

10 (N(301.3,1) ,21.4,21.4) (N(34.2,1) ,1.8,1.8) (N(99,1),9,9) (N(549.7,1) ,59,59) (N(74.2,1),7.2,7.2) 

11 (N(523.2,1) ,48.9,48.9) (N(87.5,1) ,5,5) (N(67,5,5) (N(421,1) ,32.3,32.3) (N(87,1),8.8,8.8) 

12 (N(386.4,1) ,31,31) (N(48.6,1) ,3.4,3.4) (N(108,1) ),10,10) (N(575,1), 61.8,61.8) (N(76.2,1),7.5,7.5) 

13 (N(785.7,1) ,75.2,75.2) (N(50.6,1) ,1.4,1.4) (N(87,1),8,8) (N(512.9,1) ,54.9,54.9) (N(111.3,1),11.9,11.9) 

14 (N(694.6,1) ,65.1,65.1) (N(108,1) ,11,11) (N(78,1),7,7) (N(471.5,1),50.3,50.3) (N(95.4,1),9.7,9.7) 

15 (N(598,1) ,54.5,54.5) (N(27,1) ,1.7,1.7) (N(67,1),6,6) (N(391,1),41.4,41.4) (N(42.4,1),3.3,3.3) 

16 (N(713,1) ,67.2,67.2) (N(126,1) ,9,9) (N(112,1),10,10) (N(529,1),56.7,56.7) (N(58.3,1),5.2,5.2) 

17 (N(611.8,1),56,56) (N(97.2,1) ,8.8,8.8) (N(73,1),6,6) (N(402.5,1),42.7,42.7) (N(68.9,1),6.4,6.4) 

18 (N(660.1,1),61.3,61.3) (N(81,1)7,7) (N(93,1),8,8) (N(588.8,1),63.4,63.4) (N(63.6,1),5.9,5.9) 

19 (N(529,1),46.7,46.7) (N(50.4,1),3.6,3.6) (N(48,1), 3,3) (N(276,1),28.6,28.6) (N(105.4,1),11.1,11.1) 

20 (N(621,1),57,57) (N(57.6,1),4.4,4.4) (N(77,1),7,7) (N(400.2,1),42.4,42.4) (N(90.1,1),9.2,9.2) 

 

Table 2. The stochastic fuzzy efficiency scores 

DMU ( 0.25, 0.25   ) ( 0.5, 0.25   ) ( 0.75, 0.25   ) ( 0.5, 0.5   ) ( 0.25, 0.75   ) 

1 1.0000 1.0000 1.0000 1.0000 1.0000 

2 0.5636 0.5469 0.5505 0.4455 0.3536 

3 0.8174 0.8138 0.8075 0.7288 0.6586 

4 0.7995 0.7593 0.7291 0.5748 0.5271 

5 0.7669 0.7008 0.6111 0.5296 0.4513 

6 1.0000 1.0000 1.0000 1.0000 1.0000 

7 0.5820 0.5617 0.5404 0.5130 0.4873 

8 0.4691 0.4517 0.4323 0.4160 0.4007 

9 1.0000 1.0000 1.0000 0.9919 0.9683 

10 1.0000 1.0000 1.0000 1.0000 1.0000 

11 0.5730 0.5708 0.5669 0.5214 0.4800 

12 1.0000 1.0000 1.0000 1.0000 1.0000 

13 0.7860 0.7616 0.7360 0.7052 0.6761 

14 0.4936 0.4920 0.4888 0.4461 0.4075 

15 1.0000 1.0000 1.0000 1.0000 1.0000 

16 1.0000 1.0000 1.0000 1.0000 1.0000 

17 0.5593 0.5334 0.5201 0.4339 0.4006 

18 1.0000 1.0000 1.0000 1.0000 0.9058 

19 0.4443 0.4302 0.4147 0.3941 0.3746 

20 0.5981 0.5752 0.5495 0.5302 0.5116 
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Table 3. Average Cross Efficiency of efficient DMUs. 

DMUs (δ =0.25, γ=0.25) (δ =0.5,  γ=0.25) (δ =0.75,  γ=0.25) (δ =0.5,  γ=0.5) (δ =0.25,  γ=0.75) 

DMU 1 0.9352 0.9216 0.9586 0.8038 0.8702 

DMU 6 0.6959 0.6865 0.7763 0.7637 0.7691 

DMU 9 0.8398 0.8242 0.9035 ------- ------- 

DMU 10 1.1361 1.0773 1.3782 1.0435 0.8345 

DMU 12 1.3141 1.1669 1.3379 1.2663 1.1546 

DMU 15 1.2838 1.2491 1.1606 1.2346 1.0753 

DMU 16 0.4981 0.5636 0.6031 0.6155 0.6664 

DMU 18 0.7290 0.7019 0.6908 0.6579 ------- 

 

Table 4. Complete ranking of the DMUs in different δ and γ 

δ  γ Complete ranking of the DMUs 

0.25 0.25 12>15>10>1>9>18>6>16>3>4>13>5>20>7>11>2>17>14>8>19 

0.50 0.25 15>12>10>1>9>18>6>16>3>13>4>5>20>11>7>2>17>14>8>19 

0.75 0.25 12>10>15>1>9>18>6>16>3>13>4>5>11>2>20>7>17>14>8>19 

0.50 0.50 15>12>10>1>6>18>16>9>3>13>4>20>5>11>7>14>2>17>8>19 

0.25 0.75 12>15>1>10>6>16>9>18>13>3>4>20>7>11>5>14>8>17>19>2 

 

6. Conclusions  

In this paper, we have developed a DEA model with undesirable output which is extended to fuzzy random 

environment. We have firstly modified the deterministic DEA-UO model proposed by Puri et al [32]. Further, the 

proposed DEA-UO model is extended to fuzzy random environment. A methodology in chance constraint 

programming adopted to solve such DEA model. Unlike the proposed model by Tavana et al. [37], our proposed 

approach not only leads to a linear program, but also it gives efficiency scores with the range of zero to one for 

DMUs similar to traditional input-oriented DEA models. Also, the proposed model is feasible. For future study, a 

new measure in fuzzy stochastic programming can also be planned in chance constraint programming.  
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