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A R T I C L E  I N F O  A B S T R A C T 

To the best of our knowledge, there is only two approaches for constructing an 

intuitionistic fuzzy linear regression model (regression model in which all the 

variables and coefficients are considered as intuitionistic triangular fuzzy 

numbers). However, after a deep study, some mathematical incorrect 

assumptions have been considered in these approaches. Therefore, it is 

scientifically incorrect to use these approaches for general real-life data. 

Keeping the same in mind, in this paper, a new approach (named as Ishita 

approach) is proposed to construct an intuitionistic fuzzy linear regression 

model. The proposed approach overcomes the limitations of the existing 

approaches. It is fit for positive, negative or mixed of positive and negative 

datasets represented as symmetric or asymmetric intuitionistic triangular fuzzy 

numbers. Moreover, the constructed models of the proposed approach guarantee 

the homogeneity principle such that for symmetric intuitionistic fuzzy data, the 

constructed model is symmetric, i.e., the estimated model’s coefficients are 

symmetric intuitionistic fuzzy numbers. Furthermore, the proposed approach is 

illustrated with the help of a numerical example. 
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1. Introduction 

Statistical regression analysis is reliable and powerful to construct the causal relationship between independent 

and dependent variable and has numerous applications in various fields. The complexity of real life problems where 

information is frequently uncertain and ambiguous imposed researchers to extend regression models into fuzzy 

environment. Tremendous approaches and methods have been developed to construct fuzzy regression models with 

different types of fuzzy numbers [6]. However, as far as the author knows, there is only two existing researches to 

construct intuitionistic fuzzy regression model [2, 5].  
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Arefi and Taheri [2, Section I, pp. 1142] discussed the need of fuzzy sets [18] and intuitionistic fuzzy sets [3] in 

regression analysis and claimed that there has not been any study on this topic except the existing approach [12]. 

Arefi and Taheri [2, Section VII, pp. 1152] pointed out that as in existing approach [12], the dependent and 

independent variables are considered as real numbers whereas the regression coefficients are considered as ATIFNs. 

Therefore, the existing approach [2] cannot be used to construct such intuitionistic fuzzy linear regression model in 

which dependent variable(s), independent variables and all the regression coefficients are considered as ATIFNs. To 

overcome this limitation of the existing approach [12], Arefi and Taheri [2, Section IV, pp. 1145] proposed a least-

square based approach to construct an intuitionistic fuzzy linear regression model by considering dependent 

variable(s), the independent variables and regression coefficients as ATIFNs. 

Arefi and Taheri [2] formulated their solution to estimate their model parameters based on that limited 

multiplication approximation. Consequently, given data of the independent variables and model’s parameters 

needed to be determined as positive symmetric TAIFNs although in their example there is a negative parameter 

explains the negative relationship between the output variable and one of two input variables.  

According to Zadeh’s extension principle [17], fuzzy numbers operations including multiplication as well as 

their applications such as fuzzy regression models must have no conflict with mathematical and physical principles. 

One fundamental principle must be maintained in any computation and calculations on fuzzy numbers, is the 

homogeneity principle. The homogeneity is that for full symmetric intuitionistic fuzzy linear regression model 

where the output and input variables as well as model’s coefficients, all of the three model’s components must be 

symmetric intuitionistic fuzzy numbers. Moreover, with dataset of pairs, 

(𝑦1, 𝑥1𝑗, … , 𝑥1𝑝), (𝑦2, 𝑥2𝑗, … , 𝑥2𝑝), … , (𝑦2, 𝑥𝑛𝑗, … , 𝑥𝑛𝑝), represented as symmetric TAIFNs the estimated 

coefficients must be symmetric ATIFN. So, symmetric intuitionistic fuzzy linear regression model can fit 

homogeneous datasets. Keeping in mind the homogeneity in fuzzy regression models and especially for  symmetric 

intuitionistic fuzzy linear regression model, Chen and Nien [5] proposed a mathematical programming approach to 

formulate symmetric intuitionistic fuzzy linear regression model based on least absolute of discrepancies as a 

generalized approach avoids the limitations and incontinent multiplication assumption of Arefi and Taheri [2] and 

to avoid the effect of the sign of the unknown model’s parameters, Chen and Nien [5] setup two dummy ATIFNs 

one is non-positive and another is nonnegative (with the help of an example problems related to this assumption will 

be discussed in more details in Section (2)).  The multiplication concerning assumptions of Arefi and Taheri [2] as 

well as Chen and Nien [5] with more details will be discussed in Section (2). Chen and Nien [5] mentioned that 

their approach is general such that it is not limited to symmetric ATIFNs but it constructs fuzzy model fits 

asymmetric ATIFNs as well. Moreover, on claiming that their proposed approach overcomes the conflict made by 

Arefi and Taheri [2] with homogeneity principle, however the model proposed by Chen and Nien [5], as result on 

applying the example [5, Section 4, Equation 35, pp. 205] is not symmetric AIFRM although the data are 

represented as asymmetric ATIFNs. Moreover, the assumptions of dummy variables set by Chen and Nien [5] to 

parametrize the unknown model’s slopes are not always be satisfied although the related constraints are made in 

Chen and Nien [5] mathematical programming formulation. 

After a critical study of the existing approaches [2, 5], it is noticed that they have used some mathematical 

incorrect assumptions in their approaches. In this paper, mathematical incorrect assumptions, considered by Arefi 

and Taheri [2], and Chen and Nien [5], are pointed out. Furthermore, in the literature, it is pointed out that it is 

better to use the fuzzy least absolute deviation based approach as compared to fuzzy least square based approach  

[1, 2, 4, 7, 9-12, 14-16, 19]. Therefore, a new approach (named as Ishita approach), based on least absolute 

deviation, is proposed to construct an intuitionistic fuzzy linear regression model. Therefore, motivated by 

intuitionistic fuzzy linear regression model and the limitations of the existing approaches [2, 5], the proposed Ishita 

approach constructs a sound and general to fit any type of intuitionistic fuzzy data and it conserve the homogeneity 

of data such that the model to fit data represented as symmetric ATIFNs, is symmetric, i.e., its estimated 

coefficients are symmetric ATIFNs.   

This paper is organized as follows: In Section 2, mathematical incorrect assumptions, considered in the existing 

approaches [2, 5], are pointed out. In Section 3, multiplication of two ATIFNs is proposed. In Section 4, a new 
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approach (named as Ishita approach) is proposed to construct the intuitionistic fuzzy linear regression model. In 

Section 5, the proposed Ishita approach is illustrated by a numerical example. Section 6 concludes the work. 

2. Mathematical incorrect assumptions  of the existing approach 

2.1 Arefi and Taheri’s approach  

In this section, the mathematical incorrect assumptions, considered in Arefi and Taheri approach [2], are pointed 

out as follows: 

1. It is obvious from Step 1 and Step 2 of Arefi and Taheri [2, Section IV, pp. 1145] approach, discussed in 

Section 2, that Arefi and Taheri [2, Section IV, pp. 1145] have used the multiplication (𝑎; 𝛼; 𝛼∗)(𝑏;  𝛽; 𝛽∗ ) =
(𝑎𝑏; 𝑎𝛽 + 𝑏𝛼; 𝑎𝛽∗ + 𝑏𝛼∗) to transform the intuitionistic fuzzy linear regression model (1) into the intuitionistic 

fuzzy linear regression model (2). 

2. It is pertinent to mention that this multiplication is valid only if both (𝑎; 𝛼; 𝛼∗) and (𝑏;  𝛽; 𝛽∗ ) are 

nonnegative ASTIFNs i.e., 𝑎 − 𝛼∗ ≥ 0and 𝑏 − 𝛽∗ ≥ 0. However, if (𝑎; 𝛼; 𝛼∗) and/or (𝑏;  𝛽; 𝛽∗ ) are not non-

negative ASTIFNs then the number, obtained by this multiplication, will not necessarily be an Atanassov’s 

symmetric triangular intuitionistic fuzzy number (ASTIFN). e.g., if  �̃� =  (−3;  1;  2)  and �̃� =  (2; 1; 1) then 

according to this multiplication the value of (−3;  1;  2)(2;  1;  1) =  (−6; −5;  2) which is not a ASTIFN as in 

ASTIFN (𝑎; 𝛼; 𝛼∗), 𝛼 and 𝛼∗ should always be non-negative real numbers. While, in the number (−6; −5;  2) 

the value of α is −5 which is not a non-negative real number.  

3. Since, in the intuitionistic fuzzy linear regression model the regression coefficients (𝑎𝑗; 𝜔𝑗 ;  𝜔𝑗
∗) (which are 

unknown) will not necessarily be positive ASTIFN. So, it is mathematically incorrect to use the 

multiplication(𝑎𝑗; 𝜔𝑗 ;  𝜔𝑗
∗) ⊗ (𝑥𝑖𝑗;  𝜎𝑖𝑗;  𝜎𝑖𝑗

∗ ) = (𝑎𝑗𝑥𝑖𝑗; 𝑎𝑗𝜎𝑖𝑗 + 𝑥𝑖𝑗 𝜔𝑗 ; 𝑎𝑗𝜎𝑖𝑗
∗ + 𝑥𝑖𝑗𝜔𝑗

∗) , valid only for 

nonnegative ASTIFNs, for transforming the intuitionistic fuzzy linear regression model (1) into the intuitionistic 

fuzzy linear regression model (2). 

4. In the ASTIFN (𝑎; 𝜔; 𝜔∗) the condition 𝜔∗ ≥ 𝜔  should always be satisfied. Since, Arefi and Taheri [2, 

Section IV, pp. 1145] have obtained the value of 𝜔𝑗and 𝜔𝑗
∗ by solving the system of linear equations without 

considering the restriction 𝜔𝑗
∗ ≥  𝜔𝑗. Therefore, for the values of 𝜔𝑗 and 𝜔𝑗

∗, obtained by Arefi and Taheri [2, 

Section IV, pp. 1145] approach, the condition 𝜔𝑗
∗ ≥  𝜔𝑗 will not necessarily be satisfied. Hence, the 

number (𝑎𝑗; 𝜔𝑗 ;  𝜔𝑗
∗), obtained by Arefi and Taheri [2, Section IV, pp. 1145] approach, will not necessarily be a 

ASTIFN. 

5. It is well-known fact that in the ASTIFN (𝑎𝑗; 𝜔𝑗 ;  𝜔𝑗
∗) the value of 𝜔𝑗 and 𝜔𝑗

∗  should be non-negative real 

numbers. Due to the same reason Arefi and Taheri [2, Section IV, pp. 1145] have suggested that if the obtained 

value of 𝜔𝑗 and/or 𝜔𝑗
∗ is a negative real number then again solve the system of linear equations by considering 

𝜔𝑗 and/or 𝜔𝑗
∗ equal to zero. However, to do the same is not valid e.g., on solving a system of linear equation 

3𝑥 + 𝑦 = 2 and 2𝑥 + 𝑦 = 1 the obtained values of x and y are 𝑥 = 1and 𝑦 = −1. Since, the value of 𝑦 is a 

negative real number. Therefore, according to Arefi and Taheri [2, Section IV, pp. 1145], there is need to solve 

the system of linear equations 3𝑥 + 𝑦 = 2 and 2𝑥 + 𝑦 = 1 with assumption 𝑦 = 0. However, on considering y =

0, there doesn’t exist any solution for the system of linear equations 3𝑥 + 𝑦 = 2 and 2𝑥 + 𝑦 = 1. 

 

2.2 Chen and Nien’s approach 

Chen and Nien [5] tackled the effect of the sign of an unknown model’s parameter on their constructed model, 

they assume two dummy variables such that the first is non-positive and the second is nonnegative in the place of an 

unknown AATIFN which is multiplied by the known TAIFN. In order to highlight Chen and Nien [5] 

multiplication strategy, let  �̃� = (𝑎𝑗 − 𝜔𝑗1
∗ , 𝑎𝑗 − 𝜔𝑗1, 𝑎𝑗 , 𝑎𝑗 + 𝜔𝑗2, 𝑎𝑗 + 𝜔𝑗2

∗ ) and   is an unknown ATIFN and 

�̃� = (𝑥𝑖𝑗 − 𝜎𝑖𝑗1
∗ , 𝑥𝑖𝑗 − 𝜎𝑖𝑗1, 𝑥𝑖𝑗 , 𝑥𝑖𝑗 + 𝜎𝑖𝑗2; 𝑥𝑖𝑗 + 𝜎𝑖𝑗2

∗ ) is a known ATIFN both expressed as left, main, right points, 

respectively. To find the multiplication, i.e., �̃� ⊗ �̃�, transform �̃� ⊗ �̃� into  (�̃�1 ⊕  �̃�2) ⊗ �̃� assuming that 

unrestricted ATIFN �̃� = (𝑎𝑗 − 𝜔𝑗1
∗ , 𝑎𝑗 − 𝜔𝑗1, 𝑎𝑗  , 𝑎𝑗 + 𝜔𝑗2, 𝑎𝑗 + 𝜔𝑗2

∗ ) is a sum of a non-positive ATIFN  �̃�1 =

(𝑎𝑗1 − 𝜔𝑗11
∗ , 𝑎𝑗1 − 𝜔𝑗11, 𝑎𝑗1 , 𝑎𝑗1 + 𝜔𝑗21, 𝑎𝑗1 + 𝜔𝑗21

∗ ) and a nonnegative ATIFN �̃�2 = (𝑎𝑗2 − 𝜔𝑗12
∗ , 𝑎𝑗2 −
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𝜔𝑗12, 𝑎𝑗2 , 𝑎𝑗2 + 𝜔𝑗22, 𝑎𝑗2 + 𝜔𝑗22
∗ ). So,  (�̃�1 ⊗  �̃�2) ⊗ �̃� is transformed into �̃�1 ⊗ �̃� ⊕ �̃�2 ⊗ �̃�. Hence, �̃� ⊗ �̃� =

 �̃�1 ⊗ �̃� ⊕  �̃�2 ⊗ �̃�. While   �̃�1 ≤ 0 and  �̃�2 ≥ 0, it is clear to notice that, on using the equations (11) and (12) [ 5, 

Section 2, Definition 6, pp.196], they have tacitly considered the given input variable as positive ATIFN so their 

model can fit only positive datasets. Moreover, to build up the mathematical programming problem Chen and Nien 

[5] guaranteed to get one optimal of the two dummy variables, which is the coefficient of an independent variable 

by restricting the multiplication of the two dummy ATIFNs to zero. However, the distributive property is not 

absolutely satisfied for ATIFNs. For example, let 𝐴 = (12; 13, 14; 15, 17), 𝐵 = (−5; −4, −3; −2, −1) and 

𝐶 = (2;   3, 4;  5, 7) be three ATIFNs. Then, we have (𝐴 ⊕ 𝐵) ⊗ 𝐶 = (7; 9, 11;  13, 16) ⊗ (2;  3, 4;  5, 7)  

whereas, 

𝐴 ⊗ 𝐶 ⊕ 𝐵 ⊗ 𝐶 = (24; 39, 56;  75, 119) ⊕ (−35; −20, −12; −6, −2) 

It is obvious that (𝐴 ⊕ 𝐵) ⊗ 𝐶 ≠ 𝐴 ⊗ 𝐶 ⊕ 𝐵 ⊗ 𝐶. 

Furthermore, the approach proposed by Chen and Nien [5] doesn’t maintain the homogeneity, i.e., for given data 

represented as ASTIFNs, the model is not necessarily symmetric as it is shown in the illustrative example. 

3. Proposed multiplication 

It is obvious that to find the regression coefficients (�̃�𝑗 , 𝑗 = 1,2, . . . , 𝑚) of intuitionistic fuzzy linear regression 

model �̂̃� = �̃�0 ⊕ ∑ �̃�𝑗 ⊗𝑚
𝑗=1 �̃�𝑗 , there is need to multiply the unknown ASTIFN (�̃�𝑗 ) with a known ASTIFN (�̃�𝑗 ). 

However, to the best of our knowledge no such multiplication of ATIFNs is defined in the literature.  

Therefore, in this section the multiplication of two Atanassov’s asymmetric triangular intuitionistic fuzzy 

numbers (AATIFNs) (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) and (𝑥𝑖𝑗; 𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) is proposed. The proposed 

multiplication can also be used to find the multiplication of two ASTIFNs (𝑎𝑗; 𝜔𝑗;  𝜔𝑗
∗) and (𝑥𝑖𝑗; 𝜎𝑖𝑗, ; 𝜎𝑖𝑗

∗ ) by 

considering 𝜔𝑗1 =  𝜔𝑗2 = 𝜔𝑗, 𝜔𝑗1
∗ =  𝜔𝑗2

∗ = 𝜔𝑗
∗, 𝜎𝑖𝑗1 = 𝜎𝑖𝑗2 = 𝜎𝑖𝑗 and 𝜎𝑖𝑗1

∗ =  𝜎𝑖𝑗2
∗ = 𝜎𝑖𝑗

∗  in the proposed 

multiplication. 

 Since, �̃�𝑗 = (𝑥𝑖𝑗; 𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) is a known ATIFN i.e., it can be easily checked that the following 

condition is satisfied: 

0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  

or 

𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  

or 

𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  

or 

𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 0 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  

or 

𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  

or 

𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗ ≤ 0 

So, the following multiplication can be proposed by generalizing the existing multiplication [8]. 

Case 1: If 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑗1

∗  . 

Then, 

 (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗; 𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2;  𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ).  

where, 

      𝑏𝑖𝑗 = 𝑎𝑗𝑥𝑖𝑗   

             𝜆𝑖𝑗1 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 + 𝜎𝑖𝑗1
∗ )) 

              = 𝑏𝑖𝑗 − (
(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )

2
−

|(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )|

2
)  
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             𝜆𝑖𝑗2  = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 − 𝜎𝑖𝑗2), (𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ )) 

             = 𝑏𝑖𝑗 − (
(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)+ (𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )

2
−

|(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)− (𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )|

2
)    

       𝜆𝑖𝑗1
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ ), (𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗2)) − 𝑏𝑖𝑗 

 

 

=
(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )+(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)

2
+

|(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )−(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)|

2
− 𝑏𝑖𝑗  

𝜆𝑖𝑗2
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗1
∗ ), (𝑎𝑗 + 𝜔𝑗1

∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗1)) − 𝑏𝑖𝑗 

=
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )+(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)

2
+

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )−(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)|

2
− 𝑏𝑖𝑗  

Case 2: If  𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗ .  

  Then, 

 (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗; 𝜎𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2;  𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ). 

 where,  

𝑏𝑖𝑗 = 𝑎𝑗𝑥𝑖𝑗  

𝜆𝑖𝑗1 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 + 𝜎𝑖𝑗1

∗ )) 

𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)+ (𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )

2
−

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )|

2
)  

𝜆𝑖𝑗2 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ )) 

= 𝑏𝑖𝑗 − (
(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )

2
−

|(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )|

2
)  

𝜆𝑖𝑗1
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ ), (𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗2)) − 𝑏𝑖𝑗 

=
(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )+(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)

2
+

|(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )−(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)|

2
− 𝑏𝑖𝑗  

𝜆𝑖𝑗2
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗1
∗ ), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1)) − 𝑏𝑖𝑗 

=
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)

2
+

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)|

2
− 𝑏𝑖𝑗  

Case 3: If  𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗   

  or 

  𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 0 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  . 

 Then, 

 (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗;  𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2;  𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ). 

 where, 

 𝑏𝑖𝑗 = 𝑎𝑗𝑥𝑖𝑗 

𝜆𝑖𝑗1 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 + 𝜎𝑖𝑗1

∗ ))  

       = 𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )

2
−

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)− (𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )|

2
)  

   𝜆𝑖𝑗2 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ ), (𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗2)) 

      = 𝑏𝑖𝑗 − (
(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )+(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)

2
−

|(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )−(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)|

2
)  
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 𝜆𝑖𝑗1
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ ), (𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 − 𝜎𝑖𝑗2)) − 𝑏𝑖𝑗 

   =
(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )+(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)

2
+

|(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )−(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)|

2
− 𝑏𝑖𝑗  

 𝜆𝑖𝑗2
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗1
∗ ), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1)) − 𝑏𝑖𝑗 

=
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)

2
+

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)|

2
− 𝑏𝑖𝑗  

 Case 4: If  𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 0 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗  .  

  Then, 

 (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2; 𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗;  𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2;  𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ).                                       (1) 

 where, 

𝑏𝑖𝑗 = 𝑎𝑗𝑥𝑖𝑗  

     𝜆𝑖𝑗1 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 + 𝜎𝑖𝑗1

∗ ))  

= 𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)+(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )

2
−

|(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)−(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )|

2
)  

𝜆𝑖𝑗2 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗2
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗2), (𝑎𝑗 + 𝜔𝑗2

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗2
∗ )) 

= 𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )

2
−

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )|

2
)  

𝜆𝑖𝑗1
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 − 𝜎𝑖𝑗2), (𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 + 𝜎𝑖𝑗2

∗ )) − 𝑏𝑖𝑗 

=
(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)+(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )

2
+

|(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)−(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )|

2
− 𝑏𝑖𝑗  

𝜆𝑖𝑗2
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1

∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗1
∗ ), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1)) − 𝑏𝑖𝑗 

=
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )+ (𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)

2
+

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)|

2
− 𝑏𝑖𝑗  

 Case 5: If 𝑥𝑖𝑗 − 𝜎𝑖𝑗1 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗2
∗ ≤ 𝑥𝑖𝑗 − 𝜎𝑖𝑗1

∗ ≤ 0 .  

 Then, 

 (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗; 𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2; 𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ).                                         (2) 

 where, 

     𝑏𝑖𝑗 = 𝑎𝑗𝑥𝑖𝑗 

 𝜆𝑖𝑗1 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗1
∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗1

∗ ), (𝑎𝑗 + 𝜔𝑗1
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗1)) 

 𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )+(𝑎𝑗+𝜔𝑗1

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)

2
−

|(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )−(𝑎𝑗+𝜔𝑗1
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗1)|

2
) 

  𝜆𝑖𝑗2 = 𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((𝑎𝑗 + 𝜔𝑗2
∗ )(𝑥𝑖𝑗 + 𝜎𝑖𝑗2

∗ ), (𝑎𝑗 + 𝜔𝑗2
∗ )(𝑥𝑖𝑗 − 𝜎𝑖𝑗2)) 

  = 𝑏𝑖𝑗 − (
(𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )+ (𝑎𝑗+𝜔𝑗2

∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)

2
−

|(𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )− (𝑎𝑗+𝜔𝑗2
∗ )(𝑥𝑖𝑗−𝜎𝑖𝑗2)|

2
)  

       𝜆𝑖𝑗1
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 − 𝜎𝑖𝑗2), (𝑎𝑗 − 𝜔𝑗2)(𝑥𝑖𝑗 + 𝜎𝑖𝑗2

∗ )) − 𝑏𝑖𝑗  

        
 (𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)+(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2

∗ )

2
+

|(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗−𝜎𝑖𝑗2)−(𝑎𝑗−𝜔𝑗2)(𝑥𝑖𝑗+𝜎𝑖𝑗2
∗ )|

2
− 𝑏𝑖𝑗  

      𝜆𝑖𝑗2
∗ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 − 𝜎𝑖𝑗1), (𝑎𝑗 − 𝜔𝑗1)(𝑥𝑖𝑗 + 𝜎𝑖𝑗1

∗ )) − 𝑏𝑖𝑗  

         
(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)+(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1

∗ )

2
+

|(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗−𝜎𝑖𝑗1)−(𝑎𝑗−𝜔𝑗1)(𝑥𝑖𝑗+𝜎𝑖𝑗1
∗ )|

2
− 𝑏𝑖𝑗 . 
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4. Proposed Ishita approach 

In this section, with the help of the multiplication, proposed in Section 4,  a new approach (named as Ishita 

approach) is proposed to construct intuitionistic fuzzy linear regression model �̂̃�𝑖 = �̃�0 ⊕ ∑ �̃�𝑗 ⊗𝑚
𝑗=1 �̃�𝑖𝑗 , 𝑖 =

1,2, … , 𝑛 by considering the regression coefficients �̃�𝑗 ,   𝑗 = 0,1, … , 𝑚, the estimated responses (�̂̃�𝑖 , 𝑖 = 1,2, … , 𝑛) 

and the observed data(�̃�𝑖𝑗 , �̃�𝑖 ),𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑚, as AATIFNs. The proposed Ishita approach can also be 

used to construct the intuitionistic fuzzy linear regression model, considered by Arefi and Taheri [2], by considering  

𝑠𝑖1 =  𝑠𝑖2 =  𝑠𝑖, 𝑠𝑖1
∗ =  𝑠𝑖2

∗ = 𝑠𝑖
∗, 𝜔𝑗1 =  𝜔𝑗2 = 𝜔𝑗, 𝜔𝑗1

∗ =  𝜔𝑗2
∗ = 𝜔𝑗

∗, 𝜎𝑖𝑗1 = 𝜎𝑖𝑗2 = 𝜎𝑖𝑗and 𝜎𝑖𝑗1
∗ =  𝜎𝑖𝑗2

∗ = 𝜎𝑖𝑗
∗  . 

 

The steps of the proposed Ishita approach are as follows. 

Step 1: Transform the intuitionistic fuzzy linear regression model �̂̃�𝑖 = �̃�0 ⊕ ∑ �̃�𝑗 ⊗𝑚
𝑗=1 �̃�𝑖𝑗 , 𝑖 = 1,2, … , 𝑛 into its 

equivalent intuitionistic fuzzy linear regression model (3) by assuming  �̃�𝑗  , �̃�𝑖𝑗  and �̂̃�𝑖as AATIFNs 

(𝑎𝑗;  𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ), (𝑥𝑖𝑗; 𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) and (�̂�𝑖;  𝑠𝑖1, 𝑠𝑖2; 𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) respectively. 

(�̂�𝑖;  𝑠𝑖1, 𝑠𝑖2;  𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) = (𝑎0; 𝜔01, 𝜔02;  𝜔01
∗ , 𝜔02

∗ ) ⊕ ∑ (𝑎𝑗;  𝜔𝑗1, 𝜔𝑗2; 𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ 𝑚
𝑗=1                                                       

(𝑥𝑖𝑗;  𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ),   𝑖 = 1,2, … , 𝑛.                                                                                                                   (3) 

  

Step 2: Transform the intuitionistic fuzzy linear regression model (4) into its equivalent intuitionistic fuzzy linear 

regression model (4) by replacing(𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ) ⊗ (𝑥𝑖𝑗;  𝜎𝑖𝑗1, 𝜎𝑖𝑗2; 𝜎𝑖𝑗1
∗ , 𝜎𝑖𝑗2

∗ ) = (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2;  𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ), 

obtained by using the multiplication proposed in Section (4).  

            (�̂�𝑖;  𝑠𝑖1, 𝑠𝑖2;  𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) = (𝑎0; 𝜔01, 𝜔02;  𝜔01
∗ , 𝜔02

∗ ) ⊕ ∑ (𝑏𝑖𝑗; 𝜆𝑖𝑗1, 𝜆𝑖𝑗2; 𝜆𝑖𝑗1
∗ , 𝜆𝑖𝑗2

∗ ), 𝑖 = 1, 2, … , 𝑛𝑚
𝑗=1 .      (4) 

Step 3: Transform the intuitionistic fuzzy linear regression model (4) into its equivalent intuitionistic fuzzy linear 

regression model (5). 

(�̂�𝑖;  𝑠𝑖1, 𝑠𝑖2;  𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) = (𝑎0 + ∑ 𝑏𝑖𝑗
𝑚
𝑗=1 ;  𝜔01 + ∑ 𝜆𝑖𝑗1

𝑚
𝑗=1 , 𝜔02 + ∑ 𝜆𝑖𝑗2

𝑚
𝑗=1 ;  𝜔01

∗ + ∑ 𝜆𝑖𝑗1
∗𝑚

𝑗=1 , 𝜔02
∗ +

∑ 𝜆𝑖𝑗2
∗𝑚

𝑗=1 ), 𝑖 = 1,2, … , 𝑛                                                                                                                                              (5) 

Step 4: Find the absolute deviation  (𝐷𝑖) between the estimated value of (�̂�𝑖; 𝑠𝑖1, 𝑠𝑖2; 𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) and observed values 

(𝑦𝑖;  𝑠𝑖1, 𝑠𝑖2;  𝑠𝑖1
∗ , 𝑠𝑖2

∗ ) using the relation 𝐷𝑖 = |𝑦𝑖 − (𝑎0 + ∑ 𝑏𝑖𝑗)𝑚
𝑗=1 | + |𝑠𝑖1 − (𝜔01 + ∑ 𝜆𝑖𝑗1

𝑚
𝑗=1 )| + |𝑠𝑖2 −

( 𝜔02 + ∑ 𝜆𝑖𝑗2
𝑚
𝑗=1 )| + |𝑠𝑖1

∗ − ( 𝜔01
∗ + ∑ 𝜆𝑖𝑗1

∗𝑚
𝑗=1 )| + |𝑠𝑖2

∗ − ( 𝜔02
∗ + ∑ 𝜆𝑖𝑗2

∗𝑚
𝑗=1 )|, 𝑖 = 1,2, … , 𝑛, 

where, the expression of 𝐷𝑖 is obtained by generalizing the existing expression [9, 16] for finding the absolute 

distance between two fuzzy numbers. 

Step 5: Find the sum of absolute deviations, ∑ 𝐷𝑖
𝑛
𝑖=1 = (∑ |𝑦𝑖 − (𝑎0 + ∑ 𝑏𝑖𝑗)𝑚

𝑗=1 | + |𝑠𝑖1 − (𝜔01 + ∑ 𝜆𝑖𝑗1
𝑚
𝑗=1 )| +𝑛

𝑖=1

|𝑠𝑖2 − ( 𝜔02 + ∑ 𝜆𝑖𝑗2
𝑚
𝑗=1 )| + |𝑠𝑖1

∗ − ( 𝜔01
∗ + ∑ 𝜆𝑖𝑗1

∗𝑚
𝑗=1 )| + |𝑠𝑖2

∗ − ( 𝜔02
∗ + ∑ 𝜆𝑖𝑗2

∗𝑚
𝑗=1 )|). 

Step 6: Find the optimal solution { 𝑎𝑗, 𝜔𝑗1, 𝜔𝑗2, 𝜔𝑗1
∗ , 𝜔𝑗2

∗ : 𝑗 = 0,1, … , 𝑚} of the following mathematical 

programming problem. 

Minimize(∑ |𝑦𝑖 − (𝑎0 + ∑ 𝑏𝑖𝑗)𝑚
𝑗=1 | + |𝑠𝑖1 − (𝜔01 + ∑ 𝜆𝑖𝑗1

𝑚
𝑗=1 )| + |𝑠𝑖2 − ( 𝜔02 + ∑ 𝜆𝑖𝑗2

𝑚
𝑗=1 )| +𝑛

𝑖=1

                                               |𝑠𝑖1
∗ − ( 𝜔01

∗ + ∑ 𝜆𝑖𝑗1
∗𝑚

𝑗=1 )| + |𝑠𝑖2
∗ − ( 𝜔02

∗ + ∑ 𝜆𝑖𝑗2
∗𝑚

𝑗=1 )|) 

Subject to 

0 ≤ 𝜔𝑗2 ≤ 𝜔𝑗1,           0 ≤ 𝜔𝑗2
∗ ≤ 𝜔𝑗1

∗ ,   𝑗 = 0,1, … , 𝑚. 

Step 7: Using the values of 𝑎𝑗, 𝜔𝑗1, 𝜔𝑗2, 𝜔𝑗1
∗ , 𝜔𝑗2

∗ : 𝑗 = 0,1, … , 𝑚, obtained in Step 6, find 

�̃�𝑗 = (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ).  
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Step 8: Put �̃�𝑗 = (𝑎𝑗; 𝜔𝑗1, 𝜔𝑗2;  𝜔𝑗1
∗ , 𝜔𝑗2

∗ ), obtained in Step 7, in equation (4)  to obtain the intuitionistic fuzzy linear 

regression model.  

 The proposed Ishita approach constructs a model to fit any given real-life data such that for dataset of  𝑛 

patterns,  the mathematical programming problem of Step 6  can be solved to minimize 5𝑛 of least absolute 

deviations since there is 5 ATIFN’s component for each pattern. The minimization problems in this paper are 

solved using Maple Software tool. 

 

5. Illustrative example 

Arefi and Tehri [2, Section V, pp. 1149] constructed an intuitionistic fuzzy linear regression model to illustrate 

their proposed approach by considering the data [2, Section V, Table 1, pp. 1149]. On applying the proposed Ishita 

approach for the existing data [2, Section V, Table 1, pp. 1149] the obtained values of 𝜔2 and 𝜔2
∗  are negative real 

numbers. Since, 𝜔𝑗 and 𝜔𝑗
∗ represents the distance and hence, negative values of 𝜔𝑗 and 𝜔𝑗

∗ does not have any 

physical significance. Therefore, it may be concluded that no intuitionistic fuzzy linear regression model can be 

obtained for the existing data [2, Section V, Table 1, pp. 1149].  

In this section, to illustrate the proposed Ishita approach, an intuitionistic fuzzy linear regression model is 

obtained by considering the following observed data. 

�̃�11 = (3 ; 1, 1;   2, 2), �̃�21 = (2;  1, 1; 2, 2), �̃�1 = (10;   5, 5; 9, 9), �̃�2 = (11;   4, 4; 7, 7). 

 

Using the proposed Ishita approach, an intuitionistic fuzzy linear regression model for the considered observed 

data can be obtained as follows. 

Step 1: Assuming �̃�1 = (𝑎1;  𝜔11, 𝜔12; 𝜔11
∗ , 𝜔12

∗ ) ,�̂̃�𝑖 = (�̂�𝑖;  𝑠𝑖1, 𝑠𝑖2; 𝑠𝑖1
∗ , 𝑠𝑖2

∗ ), 𝑖 = 1,2, and using Step 1 of the 

proposed Ishita approach, we have  

(�̂�1;  𝑠11, 𝑠12;  𝑠11
∗ , 𝑠12

∗ ) = (𝑎0; 𝜔01, 𝜔02;  𝜔01
∗ , 𝜔02

∗ ) ⊕ (𝑎1; 𝜔11, 𝜔12; 𝜔11
∗ , 𝜔12

∗ ) ⊗ (3 ; 1, 1;   2, 2). 

 

(�̂�2;  𝑠21, 𝑠22;  𝑠21
∗ , 𝑠22

∗ ) = (𝑎0;  𝜔01, 𝜔02;  𝜔01
∗ , 𝜔02

∗ ) ⊕ (𝑎1;  𝜔11, 𝜔12;  𝜔11
∗ , 𝜔12

∗ ) ⊗ (2; 1, 1; 2, 2). 

Step 2: Since, for the ATIFN (3;  1, 1;   2, 2), the condition 3 − 1 = 2 > 0 is satisfying as well as for the ATIFN 

(2;  1, 1; 2, 2), the condition 2 − 1 = 1 > 0 is satisfying. So,  using the multiplication, proposed in Section 3, 

(𝑎1;  𝜔11, 𝜔12;  𝜔11
∗ , 𝜔12

∗ ) ⊗ (3;  1, 1;   2, 2) = (3𝑎1; |𝑎1| + 3𝜔11 , |𝑎1| + 3𝜔12 ; 2|𝑎1| + 3𝜔11
∗ , 2|𝑎1| + 3𝜔12

∗ ) as 

well as (𝑎1; 𝜔11, 𝜔12; 𝜔11
∗ , 𝜔12

∗ ) ⊗ (2;  1, 1; 2, 2) = (2𝑎1;  |𝑎1| + 2𝜔11 , |𝑎1| + 2𝜔12 ;  2|𝑎1| + 2𝜔11
∗ , 2|𝑎1| +

2𝜔12
∗ ).  

Therefore, we have  

(�̂�1;  𝑠11, 𝑠12;  𝑠11
∗ , 𝑠12

∗ ) = (𝑎0;  𝜔01, 𝜔02; 𝜔01
∗ , 𝜔02

∗ ) ⊕ (3𝑎1; |𝑎1| + 3𝜔11 , |𝑎1|+; 2|𝑎1| + 3𝜔11
∗ , 2|𝑎1| + 3𝜔12

∗ ). 

 

(�̂�2;  𝑠21, 𝑠22;  𝑠21
∗ , 𝑠22

∗ ) = (𝑎0, 𝜔01, 𝜔02; 𝜔01
∗ , 𝜔02

∗ ) ⊕ (2𝑎1; |𝑎1| + 2𝜔11 , |𝑎1| + 2𝜔12 ; , 2|𝑎1| + 2𝜔12
∗ ). 

 

Step 3: Using Step 3 of the proposed Ishita approach, we have,   

(�̂�1;  𝑠11, 𝑠12;  𝑠11
∗ , 𝑠12

∗ ) = (𝑎0 + 3𝑎1; 𝜔01 + |𝑎1| + 3𝜔11 , 𝜔02 + |𝑎1| + 3𝜔12 ;  𝜔01
∗ +, 𝜔02

∗ + 2|𝑎1| + 3𝜔12
∗ ). 

 

(�̂�2;  𝑠21, 𝑠22;  𝑠21
∗ , 𝑠22

∗ ) = (𝑎0 + 2𝑎1;  𝜔01 + |𝑎1| + 2𝜔11 , 𝜔02 + |𝑎1| + 2𝜔12 ;   𝜔02
∗ + 2|𝑎1| + 2𝜔12

∗ ). 
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Step 4: Using Step 4 of the proposed Ishita approach, we have,  

 𝐷1 = |10 − (𝑎0 + 3𝑎1)| + |5 − (𝜔01 + |𝑎1| + 3𝜔11 )| + |5 − (𝜔02 + |𝑎1| + 3𝜔12 )| + |9 − (𝜔01
∗ +

2|𝑎1| + 3𝜔11
∗ )| + |9 − (𝜔02

∗ + 2|𝑎1| + 3𝜔12
∗ )|  

𝐷2 = |11 − (𝑎0 + 2𝑎1)| + |4 − (𝜔01 + |𝑎1| + 2𝜔11 )| + |4 − (𝜔02 + |𝑎1| + 2𝜔12 )| + |7 − (𝜔01
∗ + 2|𝑎1| +

2𝜔11
∗ )| + |7 − ( 𝜔02

∗ + 2|𝑎1| + 2𝜔12
∗ )|. 

Step 5: Using Step 5 of the proposed Ishita approach, we have, 

  ∑ 𝐷𝑖
2
𝑖=1 = |10 − (𝑎0 + 3𝑎1)| + |5 − (𝜔01 + |𝑎1| + 3𝜔11 )| + |5 − (𝜔02 + |𝑎1| + 3𝜔12 )| + |9 − (𝜔01

∗ +

2|𝑎1| + 3𝜔11
∗ )| + |9 − (𝜔02

∗ + 2|𝑎1| + 3𝜔12
∗ )| + |11 − (𝑎0 + 2𝑎1)| + |4 − (𝜔01 + |𝑎1| + 2𝜔1 )| + |4 − (𝜔02 +

|𝑎1| + 2𝜔12 )| + |7 − (𝜔01
∗ + 2|𝑎1| + 2𝜔11

∗ )| + |7 − ( 𝜔02
∗ + 2|𝑎1| + 2𝜔12

∗ )|. 

Step 6: Using Step 6 of the proposed Ishita approach, the following mathematical programming problem is 

obtained.  

Minimize (|10 − (𝑎0 + 3𝑎1)| + |5 − (𝜔01 + |𝑎1| + 3𝜔11 )| + |5 − (𝜔02 + |𝑎1| + 3𝜔12 )| + |9 − (𝜔01
∗ +

2|𝑎1| + 3𝜔11
∗ )| + |9 − (𝜔02

∗ + 2|𝑎1| + 3𝜔12
∗ )| + |11 − (𝑎0 + 2𝑎1)| + |4 − (𝜔01 + |𝑎1| + 2𝜔1 )| + |4 − (𝜔02 +

|𝑎1| + 2𝜔12 )| + |7 − (𝜔01
∗ + 2|𝑎1| + 2𝜔11

∗ )| + |7 − ( 𝜔02
∗ + 2|𝑎1| + 2𝜔12

∗ )|). 

Subject to  

0 ≤ 𝜔𝑗2 ≤ 𝜔𝑗1,           0 ≤ 𝜔𝑗2
∗ ≤ 𝜔𝑗1

∗ ,   𝑗 = 0,1. 

On solving this mathematical programming problem the obtained optimal solution is 𝑎0 = 13, 𝑎1 = −1 , 

𝜔01 = 𝜔02 =  𝜔01
∗ = 𝜔02

∗ = 1, 𝜔11 = 𝜔12 = 1, 𝜔11
∗ = 𝜔12

∗ = 2 . 

Step 7: Using the values of 𝑎𝑗, 𝜔𝑗1, 𝜔𝑗2, 𝜔𝑗1
∗ , 𝜔𝑗2

∗ : 𝑗 = 0,1 , obtained in Step 6, 

              �̃�0 = (13; 1, 1;  1, 1) and  �̃�1 = (−1;  1, 1;   2, 2). 

Step 8: Putting  �̃�𝑗 = (𝑎𝑗;  𝜔𝑗1, 𝜔𝑗2;   𝜔𝑗1
∗ , 𝜔𝑗2

∗ ), 𝑗 = 0,1, obtained in Step 7, in 

(�̂�;  𝑠1, 𝑠2;  𝑠1
∗, 𝑠2

∗) = (𝑎0;  𝜔01, 𝜔02;   𝜔01
∗ , 𝜔02

∗ ) ⊕ ((𝑎1;  𝜔1, 𝜔2;   𝜔1
∗, 𝜔2

∗) ⊗ (𝑥1;   𝜎1, 𝜎2;  𝜎1
∗, 𝜎2

∗)), the obtained 

intuitionistic fuzzy linear regression model is  

(�̂�;  𝑠1, 𝑠2;  𝑠1
∗, 𝑠2

∗) = (13; 1, 1;  1, 1) ⊕ (−1;  1, 1;   2, 2) ⊗ (𝑥1;  𝜎1, 𝜎2;  𝜎1
∗, 𝜎2

∗). 

           𝜔𝑗1 =  𝜔𝑗2 = 𝜔𝑗, 𝜔𝑗1
∗ =  𝜔𝑗2

∗ = 𝜔𝑗
∗, 𝜎𝑖𝑗1 = 𝜎𝑖𝑗2 = 𝜎𝑖𝑗and 𝜎𝑖𝑗1

∗ =  𝜎𝑖𝑗2
∗ = 𝜎𝑖𝑗

∗  

Now, we investigate another example to illustrate our approach. The dataset in this example is sized in four 

patterns of {〈�̃�𝑖, �̃�𝑖1〉|𝑖 = 1,4̅̅ ̅̅ } where �̃�𝑖 is the volume (given in Liter) of one mole of methane gas at under a constant 

pressure of one atom and �̃�𝑖1 is the temperature on Celsius scale (℃). Due to uncertainty in expressing temperature 

and volume, �̃�𝑖1 and �̃�𝑖 are represented as symmetric ATIFNs, i.e, 𝜎1 =  𝜎2 = 𝛾𝑥1𝜇
, 𝜎1

∗ =  𝜎2
∗ = 𝛾𝑥1𝑣

for every �̃�𝑖1 

and 𝑠1 =  𝑠2 = 𝛾𝑦𝜇
, 𝑠1

∗ =  𝑠2
∗ = 𝛾𝑦𝑣

 for �̃�𝑖, 𝑖 = 1, . . ,4. It assumed that there is direct relation between the 

temperature and the volume of methane gas. And the relation stops at −162 ℃. The four patterns are 

{〈(22; 0.0110, 0.9890), (−3;  0.0110, 0.9890)〉, 
〈(21;  0.0198, 0.9802), (−23;  0.0842, 0.9158), 〉 
〈(18;  0.0081, 0.9919), (−53; 0.1940, 0.80510)〉, 
〈( 9;  0.0045, 0.9955), (−162;  0.5931, 0.4069)〉} 

 The intuitionistic fuzzy regression model of this example has the following general form. 

            �̂̃� = (�̂�;  𝑠, 𝑠∗) = (�̂�0;  𝜔0, 𝜔0
∗) ⊕ ((�̂�1;  𝜔1, 𝜔1

∗) ⊗ (𝑥1;  𝜎1, 𝜎1
∗ ))                                                         (6) 

Although Arefi and Taheri [2] considered the only positive symmetric datasets in their least squared deviations 

method, their method applied in this example to show that their method cannot be generalized. The estimating the 

model’s parameters of Arefi and Taheri [2] method is The model’s intercept is (�̂�0;  𝜔0, 𝜔0
∗) = (10. 9534;  0.0111,

1.0975) and the slope is (�̂�1; 𝜔1, 𝜔1
∗) =  (−0.1087; −0.0004, 0.0004).  
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While 𝜔1 = −0.0004, the slope is not TAIFN because the spread cannot be negative and consequently, using 

Arefi and Taheri [2] approach, an intuitionistic fuzzy linear regression model doesn’t exist for such dataset. 

Although Chen and Nien [12] mentioned that their approach is general and they have set dummy variables to 

confront the effect of negative sign of slope(s), i.e.,  �̃�1 ⊗ �̃�1 =  �̃�11 ⊗ �̃� ⊕  �̃�12 ⊗ �̃� such that �̃�11 ⊗  �̃�12 =

(0; (0, 0), (0, 0)), the estimated model’s parameters using Chen and Nien [12] approach are not suitable for 

negative data. On applying Chen and Nien [12] approach for this example the obtained models’ parameters 

according to the general model (6)  as it is �̂�0 = 22.3860 , �̂�0 − 𝜔01 = 22.2522 (𝜔01 = 0.1338) �̂�0 −  𝜔01
∗ =

21.3315 𝜔01
∗ = 1.0545, �̂�0 + 𝜔02 = 22.3860 (𝜔2 = 0), �̂�0 + 𝜔02

∗ = 23.3191 (𝜔02
∗ = 0.9331). Therefore, the 

intercept is �̃�0 = (22.3860; 0.1338, 1.0545;  0, 0.9331). However, the two dummy variables are both non zero 

TAIFNs. The estimated values of  �̃�11 and  �̃�12 are (−0. 0029;  0, 0.0012;  0, 0) and (0.0859;  0.0014, 0.0014,

0, 0 ), respectively. It is obvious that neither  �̃�11 = 0 nor  �̃�11 = 0 and the independent variable cannot have two 

slopes simultaneously. Therefore, there is no model exists to fit the given data of this example using Chen and Nien 

[12] approach.  

However, on applying the Steps of proposed Ishita approach with the help of proposed multiplication and since 

all of the input data patterns are negative ASTIFNs Case 5 of the proposed multiplication is considered, the 

intuitionistic fuzzy linear model of this example after obtaining the model’s parameters is constructed as follows: 

              �̂̃� = (�̂�;  𝑠, 𝑠∗) = (23.2910;  0.0081, 0.9890) ⊕ (0.09910;  0, 0) ⊗ (𝑥1;  𝜎1, 𝜎1
∗ )                       (7) 

It is clear by this example that the proposed approach is sound and general. For the data given in this example, 

there is only one model fit such data and predict a volume of methane gas from a given temperature in Celsius scale 

this model is  model (7) which only can be constructed using the proposed approach. 

  

6. Conclusions 

This study used mathematical programming problems to construct an intuitionistic fuzzy linear regression 

models. The least absolutely deviations between the predicted and observed ATIFN are considered as the objective 

function, makes the constructed model more robust. The mathematical incorrect assumptions, considered in the 

existing approaches are pointed out. Also, a new approach (named as Ishita approach) is proposed to construct the 

intuitionistic fuzzy linear regression model. The model used proposed multiplication of an unknown ATIFN and a 

known ATIFN which is the silent feature of Ishita approach. Ishita approach is sound and general to fit any type of 

given data represented as ATIFNs. It conserves the homogeneity principle where for ASTIFNs the constructed 

model is symmetric.  Furthermore, to illustrate the proposed Ishita approach a numerical example has been solved. 

The real-life example shows the advantage of Ishita approach over existing approaches. The proposed 

multiplication is a bit complicated and nonlinear so, that can be improved as future research work.  
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