مدلسازی خردهفروش در برنامهریزی بهینه و تاب آور ظرفیت شبکههای هوشمند، با درنظرگرفتن منابع مدیریت سمت تقاضا و عدمقطعیتها
احسان خوش کردار
1
(
دانشکده مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
)
عبداله راستگو
2
(
دانشکده مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
)
سعید خراطی
3
(
دانشکده مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
)
کلید واژه: تابآوری, شبکه هوشمند, خردهفروش, مدلسازی ظرفیت,
چکیده مقاله :
هر ساله در سراسر جهان خاموشی های بسیاری به دلیل فجایع طبیعی رخ می دهند که هزینه های بسیاری به منظور بازیابی شبکه تحمیل می کنند. از این رو مفهوم تاب آوری تعریف و تلاش ها برای عملکرد تاب آور شبکه های برق شدت گرفت. یکی از موارد مهم در طراحی شبکه های برق تاب آور، تامین ظرفیت مورد نیاز سیستم با در نظرگرفتن موضوع تاب آوری است که مدنظر این مقاله است. از آنجا که با توجه به دلایل اقتصادی حضور بیشتر ارائه دهندگان ظرفیت سبب ایجاد رقابت و بهبود کارایی بازار می شود، باید از منابع مدیریت سمت مصرف نیز در بازار ظرفیت استفاده شود. با توجه به این که حضور پایدار و کارای منابع مدیریت سمت مصرف در بازار ظرفیت تنها با مشارکت شرکت های تامین کننده بار، که در این مقاله شرکت های خرده فروشی در نظر گرفته شده اند، امکان پذیر است، باید پارامترهای تاثیرگذار بر رفتار آنها و نحوه تعامل آنها با دو بخش بازار (مدیریت بازار و مشترکین) در هر دو سمت بازار مدل سازی شود. از این رو در این مقاله مدل سازی و ارزیابی شده است که مشارکت خرده فروش در بازار ظرفیت چگونه است و تا چه میزان می تواند بر کاهش هزینه های قابلیت اطمینان و تاب آوری در بازار ظرفیت موثر باشد. طبیعی است که باید سود خرده فروش در این تجارت نیز محاسبه شود و اطمینان حاصل شود که خرده فروش با کسب سود قابل قبول در این بازار حضور خواهد یافت تا شبکه نیز از حضور او بهره مند شود. نتایج عددی نشان داده است که به کارگیری خرده فروش به عنوان نماینده منابع سمت مصرف در بازار ظرفیت سبب کاهش هزینه های خاموشی به اندازه 5/1 درصد معادل با صرفه جویی 297638 دلار در سال خواهد شد، این در حالی است که خرده فروش نیز از این تجارت به طور متوسط روزانه حدود 3716 دلار سود خواهد برد.
چکیده انگلیسی :
Every year, many blackouts occur all over the world as a result of natural disasters which cause many economic losses and impose a lot of costs on electricity network in order to restore the network. Therefore, definition of resilience concept and efforts for the resilient performance of power grids intensified. One of the important things in the design of resilient power networks is to provide the required capacity of the system by considering the issue of resilience, which is considered in this paper. Considering the economic reasons, the presence of more capacity providers will create competition and improve the efficiency of the market, so demand-side management resources should also be used in the capacity market. Considering that the stable and efficient presence of demand-side management resources in the capacity market is possible only with the participation of load supplying companies, which are considered retailers in this paper, the parameters affecting their behavior and how they interact with the two market segments (market management and consumers) should be modeled on both sides of the market. Therefore, in this paper, it has been modeled and evaluated how the retailer's participation in the capacity market is and to what extent it can be effective in reducing reliability and resilience costs in the capacity market. It is natural that the retailer's profit in this business should also be calculated and it should be ensured that the retailer will be present in this market with an acceptable profit so that the network will also benefit from his presence. Numerical results have shown that using the retailer as a provider of demand-side resources in the capacity market will reduce outage costs by 1.5%, equivalent to saving $297,638 per year. Meanwhile, the retailer will also benefit from this business on an average of $3716 per day.
[1] M. Doostizadeh, H. Jalili, A. Babaei, "A decentralized framework to improve resilience in microgrids based on peer-to-peer transactions, considering independence and privacy”, Journal of Intelligent Procedures in Electrical Technology, vol. 15, no. 57, pp. 31-50, June 2024 (in Persian) (dor: 20.1001.1.23223871.1403.15.57.3.2).
[2] G. Hou, K.K. Muraleetharan, V. Panchalogaranjan, P. Moses, A. Javid, H. Al-Dakheeli, R. Bulut, R. Campos, P.S. Harvey, G. Miller, K. Boldes, M. Narayanan, "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms", Reliability Engineering and System Safety, vol. 230, Article Number: 108964, Feb. 2023 (doi: 10.1016/j.ress.2022.108964).
[3] M. Panteli, P. Mancarella, "Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies", Electric Power Systems Research, vol. 127, pp. 259-270, Oct. 2015 (doi: 10.1016/j.epsr.2015.06.012).
[4] A. Ankit, Zh. Liu, S. B. Miles, Y. Choe, "U.S. resilience to large-scale power outages in 2002-2019”, Journal of Safety Science and Resilience, vol. 3, pp. 128-135, June 2022 (doi: 10.1016/j.jnlssr.2022.02.002).
[5] Y. Yao, W. Liu, R. Jain, B. Chowdhury, J. Wang R. Cox, “Quantitative metrics for grid resilience evaluation and optimization”, IEEE Transactions on Sustainable Energy, vol. 14, pp. 1244-1258, April 2023 (doi: 10.1109/TSTE.2022.3230019).
[6] Z. M. Haider, Kh. Kh. Mehmood, M. K. Rafique, S. U. Khan, S. J. Lee, Ch. H. Kim, “Water-filling algorithm-based approach for management of responsive residential loads”, Journal of Modern Power Systems and Clean Energy, vol. 6, pp. 118-131, Jan. 2018 (doi: 10.1007/s40565-017-0340-x).
[7] M. Panteli, D. N. Trakas, P. Mancarella, N. D. Hatziargyriou, "Power systems resilience assessment: Hardening and smart operational enhancement strategies", IEEE Proceedings, vol. 105, pp. 1202-1213, July. 2017 (doi: 10.1109/JPROC.2017.2691357).
[8] H. Xie, X. Sun, Ch. Chen, Zh. Bie, J. P. S. Catalao, “Resilience metrics for integrated power and natural gas systems”, IEEE Transactions on Smart Grid, vol. 13, pp. 2483-2486, Jan. 2022.
[9] T. Cheng, Zh. Tan, H. Zhong, “Exploiting flexibility of integrated demand response to alleviate power flow violation during line tripping contingency”, Journal of Modern Power Systems and Clean Energy, Early Access, pp. 1-11, Feb. 2022 (10.35833/MPCE.2021.000535).
[10] X. Lambin, “Integration of demand response in electricity market capacity mechanisms”, Utilities Policy, vol. 64, Article Number: 101033, June 2020 (doi: 10.1016/j.jup.2020.101033).
[11] B. F. Hobbs, M. Hu, J. G. Inon, S. E. Stoft, M. P. Bhavaraju, “A dynamic analysis of a demand curve-based capacity market proposal: The PJM reliability pricing model”, IEEE Transactions on Power Systems, vol. 22, pp. 3-14, Jan. 2007 (doi: 10.1109/TPWRS.2006.887954).
[12] Y. Xiao, Q. Su, B. C. Chiu, J. Bastian, A. Angle, “Demand response modeling in PJM capacity market”, IEEE General Meeting on Power and Energy Society, pp. 1-7, Nov. 2012 (doi: 10.1109/PESGM.2012.6345733).
[13] Y. Xiao, Y. Y. Lee, F. S. Bresler, J. Bastian, A. Angle, “Integration of demand response into PJM capacity market incremental auction”, IEEE General Meeting on Power and Energy Society, pp. 1-5, Mar. 2013 (doi: 10.1109/PESGM.2013.6342514).
[14] J. Ma, B. Venkatesh, “New real-time demand response market co-optimized with conventional energy market”, IEEE Systems Journal, vol. 16, pp. 6381-6392, Jan. 2022 (doi: 10.1109/JSYST.2021.3132786).
[15] C. L. Anderson, J. B. Cardell, “A decision framework for optimal pairing of wind and demand response resources”, IEEE Systems Journal, vol. 8, pp. 1104-1111, June 2014 (doi: 10.1109/JSYST.2014.2326898).
[16] A. Roudbari, et. al., “Resilience oriented operation of smart grids by rescheduling of energy resources and electric vehicles management during extreme weather condition”, Sustainable Energy, Grids and Networks, vol. 28. Article Number: 100547, Dec. 2021 (doi: 10.1016/j.segan.2021.100547).
[17] B. Kashanizadeh, H. M. Shourkaei, M. Fotuhi-Firuzabad, “Short-term resilience-oriented enhancement in smart multiple residential energy system using local electrical storage system, demand side management and mobile generators”, Journal of Energy Storage, vol. 52, Article Number: 104825, Aug. 2022 (doi: 10.1016/j.est.2022.104825).
[18] S. Rahgozar, A. Zare, P. Siano, “A resilience-oriented planning of energy hub by considering demand response program and energy storage systems”, Journal of Energy Storage, vol. 52, Article Number: 104841, Aug. 2022 (doi: 10.1016/j.est.2022.104841).
[19] M. W. Tian, P. Talebizadehsardari, “Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program”, Energy, vol. 215, Article Number: 119058, Jan. 2021 (doi: 10.1016/j.energy.2020.119058).
[20] A. Younesi, H. Shayeghi, P. Siano, A. Safari, “A multi-objective resilience economic stochastic scheduling method for microgrid”, International Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 106974, Oct. 2021 (doi: 10.1016/j.ijepes.2021.106974).
[21] A. Younesi, H. Shayeghi, A. Safari, P. Siano, “Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation”, Energy, vol. 207, Article Number: 118220, Sep. 2020 (doi: 10.1016/j.energy.2020.118220).
[22] A. Shakeri Kahnamouei, S. Lotfifard, “Enhancing resilience of distribution networks by coordination microgrids and demand response programs in service restoration”, IEEE Systems Journal, vol. 16, pp. 1-12, June 2021 (doi: 10.1109/JSYST.2021.3097263).
[23] S. Chanda, A. K. Srivastava, “Defining and enabling resilience of electric distribution systems with multiple microgrids”, IEEE Trans. on Smart Grid, vol. 7, pp. 2859-2868, May 2016 (doi: 10.1109/TSG.2016.2561303).
[24] H. Masrur, A. Sharifi, M. R. Islam, M. A. Hossain, T. Senjyu, “Optimal and economic operation of microgrids to leverage resilience benefits during grid outages”, International Journal of Electrical Power and Energy Systems, vol. 132, Article Number: 107137, Nov. 2021 (doi: 10.1016/j.ijepes.2021.107137).
[25] M. H. Amirioun, F. Aminifar, H. Lesani, “Resilience oriented proactive management of microgrids against windstorms”, IEEE Trans. on Power Systems, vol. 33, pp. 4275-4284, July 2018 (doi: 10.1109/TPWRS.2017.2765600).
[26] K. S. A. Sedzro, A. J. Lamadrid, L. F. Zuluaga, “Allocation of resources using a microgrid formation approach for resilient electric grids”, IEEE Trans. on Power Systems, vol. 33, pp. 2633-2643, May 2018 (doi: 10.1109/TPWRS.2017.2746622).
[27] S. Mousavizadeh, M. R. Haghifam, M. H. Shariatkhah, “A linear two stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources”, Applied Energy, vol. 211, pp. 443-460, Feb. 2018 (doi: 10.1016/j.apenergy.2017.11.067).
[28] Y. Xu, Y. Xing, Q. Huang, J. Li, G. Zhang, O. Bamisile, Q. Huang, “A review of resilience enhancement strategies in renewable power system under HILP events”, Energy Reports, vol. 9, pp. 200-209, May 2023 (doi.org/10.1016/j.egyr.2022.12.128).
[29] A. Grochowicz, K. V. Greevenbroek, F. E. Benth, M. Zeyringer, “Intersecting near-optimal spaces: European power systems with more resilience to weather variability”, Energy Economics, vol. 118, Aiticle Number: 106496, Feb. 2023 (doi.org/10.1016/j.eneco.2022.106496).
[30] F. Dehghani, M. Mohammadi, M. Karimi, “Age-dependent resilience assessment and quantification of distribution systems under extreme weather events”, International Journal of Electrical Power and Energy Systems, vol. 150, Article Number: 109089, Aug. 2023 (doi.org/10.1016/j.ijepes.2023.109089).
[31] H. G. Kwag, J. Kim, “Optimal combined scheduling of generation and demand response with demand resource constraints”, Applied Energy, vol. 96, pp. 161-170, Aug. 2012 (doi: 10.1016/j.apenergy.2011.12.075).
[32] A. Ghaderi, M. Parsa Moghaddam, M. K. Sheikh-El Eslami, “Energy efficiency resource modeling in generation expansion planning”, Energy, vol. 68, pp. 529-537, April 2014 (doi: 10.1016/j.energy.2014.02.028).
[33] M. Hekkenberg, R. M. J. Benders, H. C. Moll, A. J. M. Schoot Uiterkamp, “Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands”, Energy Policy, vol. 37, pp. 1542-1551, April 2009 (doi: 10.1016/j.enpol.2008.12.030).
[34] H. Jalili, M.K. Sheikh-El-Eslami, M.P. Moghaddam, P. Siano, "Modeling of retailer’s behavior for participation in the capacity market", International Transactions on Electrical Energy Systems, vol. 29, pp. 1-29, June 2019 (doi: 10.1002/2050-7038.12056).
[35] Y. Ding, P. Wang, "Reliability and price risk assessment of a restructured power system with hybrid market structure”, IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 108-116, Feb. 2006 (doi: 10.1109/TPWRS.2005.857835).
[36] R. Nesaei Kalati, M. K. Sheikh-El-Eslami, “Determination of DSM strategy to participate in the capacity market (in Persian)”, M. S. Thesis, Tarbiat Modares University, 2015.
[37] A. Abdollahi, M. Parsa Moghaddam, M. Rashidinejad, M. K. Sheikh-El-Eslami, “Investigation of economic and environmental-driven demand response measures incorporating UC”, IEEE Transactions on Smart Grid, vol. 3, pp. 12-25, Dec. 2012 (doi: 10.1109/TSG.2011.2172996).
[38] A. Askarizadeh, E. Mashhour, M. Saniei, "A multi-objective optimization model based on genetic algorithm for voltage management of radial distribution networks in tropical areas of south of Iran using a combination of fixed capacitors and voltage regulators", Journal of Intelligent Procedures in Electrical Technology, vol. 15, no. 60, pp. 171-194, March 2025 (in Persian).
[39] M. Karimi, M. Ehasan, F. Faghihi, "Coordination of protection equipment in synchronous generator-based microgrids with regards to maintaining first swing stability", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 54, pp. 91-108, June 2023 (in Persian) (dor: 20.1001.1.23223871.1402.14.54.6.2).
[40] P. Wang, Y. Xiao, Y. Ding, “Nodal Market Power Assessment in Electricity Markets”, IEEE Trans. on Power Systems, vol. 19, pp. 1373-1379, Aug. 2004 (doi: 10.1109/TPWRS.2004.831695).
_||_