آنتن پچ مثلثی با فراکتال ذوزنقهای به همراه دو زیر لایه با لایههای مکمل
محورهای موضوعی : انرژی های تجدیدپذیرمحمدرضا سپهری 1 , محمدامین هنرور 2
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: آنتن, تکنولوژی میکرواستریپ, فراکتال ذوزنقهای, لایه مکمل,
چکیده مقاله :
در این مقاله بهبود الگوی تشعشعی و خواص چند بانده آنتن فراکتال ذوزنقهای با لایههای خود مکمل، مورد بررسی قرار گرفته است. تغذیه آنتن توسط خط مایکرواستریپ و با دو زیر لایه، برای افزایش پهنای باند و بهبود پترن تشعشعی ایجاد شده است. طبقه بندی دو لایه مکمل باعث اثرات مثبت در فرکانس تشدید و بهبود پترن تشعشعی شده است. این آنتن بازدهی، پهنای باند و الگوی تشعشی مناسبی، در فرکانسهای تشدید طراحی شده ایجاد کرده است. شش فرکانس تشدید با افت برگشتی کمتر از 15 دسیبل (S11 کمتر از 15- دسیبل) در محدوده فرکانسی 5/0 تا 4 گیگاهرتز بهدست آمده است. نتایج حاصل از اندازهگیری صحت نتایج بهدست آمده از شبیهسازی را به وضوح تایید میکند.
In this paper, the improvement of the radiation pattern and the properties of multi-band trapezoidal fractal antenna with self-complementary layers have been investigated. The antenna is excited by a microstrip feed-line with two sub-layers to increase bandwidth and improve the radiation pattern. The dual-layered complementary arrangement has had positive effects on the resonance frequencies and improved the properties of the radiation patterns. This antenna offers a good efficiency, suitable bandwidth, and radiated pattern in a designed resonance frequency. Six bands (S11<-15 dB), with center frequencies of f1=0.9 GHz, f2=1.57 GHz, f3=1.85 GHz, f4=2.15 GHz, f5=2.5 GHz and f6=3.5 GHz are obtained within the band of (0.5-4) GHz. This antenna offers good efficiency which changes from 70% to 95%. The measurement results clearly confirm the simulation results
[1] M. Vaheb, A. Hashemi, H. Emami, M. Emami, “Design and simulation of a sample of integrated broadband antenna and omni-directional for marine floats”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 25, pp. 29-40, Spring 2016 (dor: 20.1001.1.23223871.1395.7.25.4.3) (in Persian).
[2] M. Zobeyri, A. Eskandari, “Design and fabrication of novel single- and dual-band bandpass filters with modern zero-degree feed structure for wireless communications”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 33, pp. 47-61, Spring 2018 (dor: 20.1001.1.23223871.1397.9.33.5.4) (in Persian).
[3] C. Mahajan, V. Vyas, “Wine glass shaped microstrip antenna with woodpile structure for wireless applications”, Majlesi Journal of Electrical Engineering, vol. 13, no. 1, pp. 37-44, March 2019.
[4] E. Shirazi, M. Honarvar, “Design and simulation of a novel broadband circularly polarized microstrip slot antenna”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 26, pp. 45-52, Summer 2016 (doi: 20.1001.1.23223871.1395.7.26.5.6).
[5] F. Pizarro, D. Ramírez-Gil, A. Algaba-Brazález, L. F. Herrán-Ontanón, E. Rajo-Iglesias, “Comparison study of 4×4 butler matrices in microstrip technologies for Ka-band”, AEU- International Journal of Electronics and Communications, vol. 122, Article Number: 153248, July 2020 (doi: 10.1016/j.aeue.2020.153248).
[6] D.V. Kiran, D. Sankaranarayanan, B. Mukherjee, "Compact embedded dual-element rectangular dielectric resonator antenna combining sierpinski and minkowski fractals", IEEE Trans. on Components, Packaging and Manufacturing Technology, vol. 7, no. 5, pp. 786-791, May 2017 (doi: 10.1109/TCPMT.2017.2690463).
[7] K. Wong, H. Chang, C. Wang, S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application", IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 213-217, Jan. 2020 (doi: 10.1109/LAWP.2019.2958961).
[8] S. Su, C. Lee, S. Chen, "Very-low-profile, triband, two-antenna system for WLAN notebook computers", IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1626-1629, Sept. 2018 (doi: 10.1109/LAWP.2018.2858849).
[9] H. Huang, Y. Liu, S. Zhang, S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 662-665, 2015 (doi: 10.1109/LAWP.2014.2376969).
[10] G. Li, H. Zhai, Z. Ma, C. Liang, R. Yu, S. Liu, "Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals", IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1128-1131, 2014 (doi: 10.1109/LAWP.2014.2330065).
[11] Y. Ban, J. Chen, S. Sun, J.L. Li, J. Guo, "Printed monopole antenna with a long parasitic strip for wireless USB dongle LTE/GSM/UMTS operation", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 767-770, 2012 (doi: 10.1109/LAWP.2012.2205549).
[12] J. Lu, Y. Wang, "Internal uniplanar antenna for LTE/GSM/UMTS operation in a tablet computer", IEEE Trans. on Antennas and Propagation, vol. 61, no. 5, pp. 2841-2846, May 2013 (doi: 10.1109/TAP.2013.2243693).
[13] S. Velan, E.F. Sundarsingh, M. Kanagasabai, A.K. Sarma, C. Raviteja, R. Sivasamy, J.K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 249-252, 2015 (doi: 10.1109/LAWP.2014.2360710).
[14] S. Zheng, Y. Yin, J. Fan, X. Yang, B. Li, W. Liu, "Analysis of miniature frequency selective surfaces based on fractal antenna–filter–antenna arrays", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 240-243, 2012 (doi: 10.1109/LAWP.2012.2189749).
[15] A. Amini, H. Oraizi, M.A. Chaychi-zadeh, "Miniaturized UWB log-periodic square fractal antenna", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1322-1325, March 2015 (doi: 10.1109/LAWP.2015.2411712).
[16] A. Mohanty, S. Sahu, “Compact wideband hybrid fractal antenna loaded on AMC reflector with enhanced gain for hybrid wireless cellular networks”, AEU- International Journal of Electronics and Communications, vol. 138, Article Number: 153837, Aug. 2021 (doi: 10.1016/j.aeue.2021.153837).
[17] Y. Lin, S.S.H. Hsu, "A sierpinski space-filling clock tree using multiply-by-3 fractal-coupled ring oscillators", IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2947-2962, Nov. 2017 (doi: 10.1109/JSSC.2017.2732730).
[18] E. Volkov, E.H. Hellen, “The effect of characteristic times on collective modes of two quorum sensing coupled identical ring oscillators”, Chaos, Solitons & Fractals, vol. 151, Article Number: 111176, Oct. 2021 (doi: 10.1016/j.chaos.2021.111176).
[19] J.R. Crute, L.E. Davis, "Loss characteristics of high-/spl epsiv//sub r/ microstrip lines fabricated by an etchable thick-film on ceramic MCM technology", IEEE Trans. on Advanced Packaging, vol. 25, no. 3, pp. 393-396, Aug. 2002 (doi: 10.1109/TADVP.2002.805551).
[20] N. Malekpour, M. Honarvar, A. Dadgarpour, “Design and simulation of a compact UWB MIMO antenna with mutual coupling reduction”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 25, pp. 15-20, Spring 2016 (dor: 20.1001.1.23223871.1395.7.25.2.1) (in Persian).
[21] R. Dehghani, R. Aghajani, “Angular resolution enhancement of the MIMO radar by using the 2D nested array method”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 1-12, Autumn 2020 (dor: 20.1001.1.23223871.1399.11.43.1.4) (in Persian).
[22] D. Tiwari, J.A. Ansari, A. Saroj, M. Kumar, “Analysis of a miniaturized hexagonal sierpinski gasket fractal microstrip antenna for modern wireless communications”, AEU- International Journal of Electronics and Communications, vol. 123, Article Number: 153288, Aug. 2020 (doi: 10.1016/j.aeue.2020.153288).
[23] O. Devesh, J.A. Ansari, M.G. Siddiqui, A.K. Saroj, “Analysis of Modified Square Sierpinski Gasket fractal microstrip antenna for Wireless communications”, AEU- International Journal of Electronics and Communications, vol. 94, pp. 377-385, Sept. 2018 (doi: 10.1016/j.aeue.2018.07.027).
[24] A. Mohanty, B.R. Behera, “Insights on radiation modes and pattern diversity of two element UWB fractal MIMO antenna using theory of characteristics modes analysis”, AEU- International Journal of Electronics and Communications, vol. 135, Article Number: 153726, June 2021 (doi: /10.1016/j.aeue.2021.153726).
[25] C. P. Baliarda, J. Romeu, A. Cardama, “The kochmonopole: A small fractal antenna”, IEEE Trans. on Antenna and Propagation, vol. 48, no. 11, pp. 1773-1781, Nov. 2000 (doi: 10.1109/8.900236).
[26] S. Kumar, S. Srivastava, A.D. Pandey, M.R. Tripathy “Design of miniaturized fractal antenna on two-layer stack”, International Journal of Enhanced Research in Science Technology and Engineering, vol. 3, no. 8, Aug. 2014.
[27] Y. Wang, Z. Wang, J. Li, "UHF moore fractal antennas for online GIS PD detection", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 852-855, 2017 (doi: 10.1109/LAWP.2016.2609916).
[28] K.C. Hwang, "A modified sierpinski fractal antenna for multiband application", IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 357-360, Oct. 2007 (doi: 10.1109/LAWP.2007.902045).
[29] U. Keshwala, S. Rawat, K. Ray, "Design and analysis of eight petal flower shaped fractal antenna for THz applications”, Optik, vol. 241, Article Number: 166942, Sept. 2021 (doi: 10.1016/j.ijleo.2021.166942).
[30] A. Zohur, H. Mopidevi, D. Rodrigo, M. Unlu, L. Jofre, B.A. Cetiner, "RF MEMS reconfigurable two-band antenna", IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 72-75, 2013 (doi: 10.1109/LAWP.2013.2238882).
[31] P.S.R. Chowdary, A.M. Prasad, P.M. Rao, "Design of modified sierpinski antenna for WLAN applications”, Proceeding of the IEEE/ICECS, pp. 1-4, Coimbatore, India Feb. 2014 (doi: 10.1109/ECS.2014.6892769).
[32] G.F. Tsachtsiris, C.F. Soras, M.P. Karaboikis, V.T. Makios, "Analysis of a modified sierpinski gasket monopole antenna printed on dual band wireless devices", IEEE Trans. on Antenna and Propagation, vol. 52, no. 10, Oct. Oct. 2004 (doi: 10.1109/TAP.2004.834088).
_||_