طراحی و تحلیل گشتاور موتور بدون جاروبک جریان مستقیم شیار دوبل با آهنرباهای اسپکی و سطحی با استفاده از روش اجزاء محدود
محورهای موضوعی : انرژی های تجدیدپذیر
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات ریز شبکههای هوشمند- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: روش اجزا محدود, شیار دوگانه استاتور, ماشین بدون جاروبک جریان مستقیم, مدل هیبرید,
چکیده مقاله :
هدف از این تحقیق، مطالعه تأثیر شیار دوم در دندانه استاتور بر روی عملکرد دو ساختار متداول روتور به نام های اسپکی و سطحی، برای موتور جریان مستقیم بدون جاروبک (BLDC) است. نتایج برای حالت های مختلف بسته بودن شیارها ارائه و مقایسه شده است. سپس با جای گذاری یک سیم پیچ تغذیه شده با جریان مستقیم و یا آهنرباهای مغناطیس دائم درون شیار دندانه های استاتور موتوری که در مراحل قبل بهترین عملکرد را داشته، دو مدل هیبرید BLDC معرفی و مورد مطالعه قرار گرفته اند. نتایج حاکی از آن است که رویکرد بستن شیار به شدت بر روی نوسانات گشتاور مؤثر است در حالی که گشتاور تولیدی هر دو ساختار تقریباً ثابت مانده است. در خصوص HBLDC، میدان الکترومغناطیسی جانبی که در شیار دندانه استاتور جای گذاری شده عملکرد گشتاوری موتورها را بهبود می بخشد. در همه مراحل این تحقیق از روش اجزای محدود استفاده شده است.
The aim of this paper is to investigate the impact of second slot in stator tooth on performance of two commonly used rotor structures, namely Surface-type and Spoke-type, for a brushless direct current (BLDC) motor. The comparative results are reported for different closing slot conditions. Afterwards by inserting a direct current driven winding or permanent magnets (PMs) into the stator tooth slots of best performed model of previous stage, two hybrid-brushless direct current (HBLDC) motors are introduced and studied. The results demonstrated that slot-closing strategy has high impact on torque fluctuations while the torque produced remain almost constant. For HBLDC, the auxiliary Electro-Magnetic field, placed in stator slot, developed torque performance of the motors. The finite element method (FEM) is used in stages of study.
[1] S.J. Wang, C.C. Cheng, S.K. Lin, J.J. Ju, D.R. Huang, “An automatic pin identification method for a three-phase DC brushless motor”, IEEE Trans. on Magnetics, vol. 41, no. 10, pp. 3916-3918, Oct. 2005 (doi: 10.1109/TMAG.2005.854970).
[2] W. Tong, S. Li, X. Pan, S. Wu, R. Tang, “Analytical model for cogging torque calculation in surface-mounted permanent magnet motors with rotor eccentricity and magnet defects", IEEE Trans. on Energy Conversion, vol. 35, no. 4, pp. 2191-2200, Dec. 2020 (doi: 10.1109/TEC.2020.2995902).
[3] C.N. Tanaka, I.E. Chabu, “Flux reversal free splittable stator core doubly salient permanent magnet motor”, IEEE Latin America Transactions, vol. 18, no. 08, pp. 1329-1336, Aug. 2020 (doi: 10.1109/TLA.2020.9111067).
[4] J.F. Gieras, M. Wing, “Permanent magnet motor technology: Design and applications”, 2th Edition, Marcel Dekker, Inc., 2002.
[5] B. Majidi, J. Milimonfared, “Modeling, design, and sensitivity analysis of a continuous magnetic gear using finite-element method”, Electric Power Components and Systems, vol. 44, no. 2, pp. 1029-1039, 2016 (doi: 10.1080/15325008.2016.1147507).
[6] B. Majidi, J. Milimonfared, “Design and analysis of an interior continuous magnetic gear box using finite element method”, Applied Computational Electromagnetics Society Journal, vol. 30, no. 1, pp. 109-116-, January 2015.
[7] D. Karamalian, B. Majidi, M.R. Yousefi, “Rotor design and analysis of 4/2 SRMs to produce continuous torque using finite element method”, Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 33, pp. 13-20, Jan. 2017 (in Persian) (dor: 20.1001.1.23223871.1396.8.32.2.2).
[8] A. Tavakolzadeh, J. Feiz, G. Shahgholian, “Comparision between two methods to decrease cogging torque in single phase surface permanent magnet motor”, Journal of Intelligent Procedures in Electrical Technology, vol. 4, no. 13, pp. 23-28, March 2013 (in Persian) (dor: 20.1001.1.23223871.1392.4.13.3.7).
[9] M. Jafarboland, A. Nekoubin, “Designing a two-phase BLDC motor and finite-element analysis of stator slots structure effects on the motor operation”, Journal of Intelligent Procedures in Electrical Technology, vol. 5, no. 17, pp. 15-20, June 2014 (in Persian) (dor: 20.1001.1.23223871.1393.5.17.2.1).
[10] B.K. Lee, M. Ehsani, “Advanced BLDC motor drive for low cost and high performance propulsion system in electric and hybrid vehicles”, Proceeding of IEEE/IEMDC, Cambridge, MA, pp. 246-251, June 2021 (doi: 10.1109/IEMDC.2001.939307).
[11] P. Bogusz, M. Korkosz, A. Powrózek, J. Prokop, P. Wygonik, “An analysis of operation of brushless DC machine used in unmanned aerial vehicle hybrid drive”, Proceeding of the IEEE/EDPE, Tatranska Lomnica, Slovakia, Sept. 2015 (doi: 10.1109/EDPE.2015.7325328).
[12] P. Bogusz, M. Korkosz, A. Powrózek, J. Prokop, P. Wygonik, “An analysis of properties of the BLDC motor for unmanned aerial vehicle hybrid drive”, Proceeding of the IEEE/EDPE, Tatranska Lomnica, Slovakia, Sept. 2015 (doi: 10.1109/EDPE.2015.7325338).
[13] P. Bogusz, M. Korkosz, J. Prokop, “The analysis of high-speed multi-pole brushless motor with permanent magnets for hybrid drive of unmanned aerial vehicle”, Proceeding of the IEEE/SME, pp. 1-6, Naleczow, Poland, Juen 2017 (doi: 10.1109/ISEM.2017.7993581).
[14] R. Praveen, M. Ravichandran V.S. Achari, V.J. Raj, G. Madhu, G. Bindu, “Design and analysis of zero cogging brushless dc motor for spacecraft applications”, Proceeding of the IEEE/ECTI, pp. 254-258, Chiang Mai, Thailand, May 2010.
[15] P. Bogusz, M. Korkosz, J. Prokop, “A study of design process of BLDC motor for aircraft hybrid drive”, Proceeding of the IEEE/ISIE, pp. 508-513, Gdansk, Poland, June 2011 (doi: 10.1109/ISIE.2011.5984077).
[16] S. Yang, Y. Jung, J. Seo, M. Lee, J.H. Kim, “Numerical and experimental study on the cooling performance affected by ventilation holes of a BLDC motor for multi-copters”, Proceeding of the IEEE/PEMC, Budapest, Hungary, pp. 293-298, Nov. 2018 (doi: 10.1109/EPEPEMC.2018.8521995).
[17] H.M. Yang, J.W. Cha, B.H. Baik, B.I. Kwon, “Design and analysis of high speed BLDC motor for centrifuge”, Proceeding of the IEEE/ICEMS, pp. 968-972, Pattaya, Thailand, Oct. 2015 (doi: 10.1109/ICEMS.2015.7385176).
[18] Z. Liu, S. Chen, Q. Zhang, “Design of brushless DC spindle motors for high speed HDD recording”, IEEE Trans. on Magnetics, vol. 34, no. 2, pp. 483-485, March 1998 (doi: 10.1109/20.667799).
[19] S.X. Chen, Q.D. Zhang, H.C. Chong, T. Komatsu, C.H. Kang, “Some design and prototyping issues on a 20000 rpm HDD spindle motor with a ferro-fluid bearing system”, IEEE Trans. on Magnetics, vol. 37, no. 2, pp. 805-809, March 2001 (doi: 1 0.1109/20.917620).
[20] S. Sung, G. Jang, J. Jang, J. Song, H. Lee, “Vibration and noise in a HDD spindle motor arising from the axial UMF ripple”, IEEE Trans. on Magnetics, vol. 49, no. 6, pp. 2489-2494, May 2013 (doi: 10.1109/TMAG.2013.2245318).
[21] S. Sung, G. Jang, H. Lee, “Torque ripple and unbalanced magnetic force of a BLDC motor due to the connecting wire between slot windings”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp. 3319-3322, Oct. 2012 (doi: 10.1109/TMAG.2012.2198879).
[22] M.R. Pahlavani, Y.S. Ayat, A. Vahedi, “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”, IET Electric Power Applications, vol. 11, no. 6, pp. 1124-1130, March 2017 (doi: 10.1049/iet-epa.2016.0754).
[23] J. Hur, H.G. Sung, B.K. Lee, C.Y. Won, B.H. Lee, “Development of high-efficiency 42V cooling fan motor for hybrid electric vehicle applications”, Proceeding of the IEEE/VPPC, pp. 1-6, Windsor, UK, Sept. 2006 (doi: 10.1109/VPPC.2006.364307).
[24] A. Sateesh, P. Sudip, P. Anjaneya, J. Kumar, “Modelling of brushless DC hub motor to control the speed of indigenous powered wheelchair”, Proceeding of the IEEE/ComPE, pp. 091-094, Shillong, India, July 2020 (doi: 10.1109/ComPE49325.2020.9200192).
[25] W. Cui, Y. Gong, M. Xu, “A permanent magnet brushless DC motor with bifilar winding for automotive engine cooling application”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp.3348-3351, Nov. 2012 (doi: 10.1109/TMAG.2012.2202095).
[26] T.Y. Lee, M.K. Seo, Y.J. Kim, S.Y. Jung, “Motor design and characteristics comparison of outer-rotor-type BLDC motor and BLAC motor based on numerical analysis”, IEEE Trans. on Applied Superconductivity, vol. 26, no. 4, pp. 1-6, June 2016 (doi: 10.1109/TASC.2016.2548079).
[27] S. Sashidhar, B. Fernandes, “A low-cost semi-modular dual-stack PM BLDC motor for a PV based bore-well submersible pump”, Proceeding of the IEEE/ICEM, pp. 24-30, Berlin, Germany, Sept. 2014 (doi: 10.1109/ICELMACH.2014.6960154).
[28] S. Sashidhar, B. Fernandes, “Comparison of a ferrite based single, three-phase spoke and surface permanent magnet BLDC motor for a PV submersible water pump”, Proceeding of the IEEE/ICIT, pp. 671-676, Seville, Spain , March 2015 (doi: 10.1109/ICIT.2015.7125175).
[29] S. Sashidhar, B. Fernandes, “A novel ferrite SMDS spoke-type BLDC motor for PV bore-well submersible water pumps”, IEEE Trans. on Industrial Electronics, vol. 64, no. 1, pp. 104-114, Jan. 2016 (doi: 10.1109/TIE.2016.2609841).
[30] Z. Zhang, Y. Yan, Y. Tao, “A new topology of low speed doubly salient brushless DC generator for wind power generation”, IEEE Trans. on Magnetics, Vol. 48, no. 3, pp. 1227-1233, March 2012 (doi: 10.1109/TMAG.2011.2169805).
[31] M. Fazil, K. Rajagopal, “A novel air-gap profile of single-phase permanent-magnet brushless DC motor for starting torque improvement and cogging torque reduction”, IEEE Trans. on magnetics, vol. 46, no.11, pp. 3928-3932, Nov. 2010 (doi: 10.1109/TMAG.2010.2057514 ).
[32] J. Kumar, V. Gowtham, S. Sashidhar, “Comparison of synchronous reluctance, PM assisted synchronous reluctance and spoke-type BLDC motor for an E-rickshaw”, Proceeding of the IEEE/ICIT, Valencia, Spain, March 2021(doi: 10.1109/ICIT46573.2021.9453466).
[33] C. He, T. Wu, “Sesign, analysis and experiment of a permanent magnet brushless DC motor for electric impact wrench”, Proceeding of the IEEE/ICEM, Lausanne, Switzerland, Nov. 2016 (doi: 10.1109/ICELMACH.2016.7732736).
[34] G.T. Paula, J. Monteiro, T. Almeida, M. Santana, “Different slot configurations for direct-drive pm brushless machines”, IEEE Latin America Transactions, vol. 13, no. 3, pp. 634-639, March 2015 (doi: 10.1109/TLA.2015.7069085).
[35] S.K. Lee, G.H. Kang, J. Hur, B.W. Kim, “Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp. 4662-4665, Nov. 2012 (doi: 10.1109/TMAG.2012.2201455).
[36] P. Yeji, K. Hyunwoo, I. Hyungkwan, H. Sang-Hawn, L. Ju, J. Dong-Hoon, “Efficiency improvement of permanent magnet BLDC with halbach magnet array for drone”, IEEE Trans. on Applied Superconductivity, vol. 30, no. 4, pp. 1-9, June 2020 (doi: 10.1109/TASC.2020.2971672).
[37] S. Sashidhar, B. Fernandes, “Braking torque due to cross magnetization in unsaturated IPM BLDC machines and its mitigation”, IEEE Trans. on Magnetics, vol. 53, no. 1, pp. 1-9, Oct. 2016 (doi: 10.1109/TMAG.2016.2618343).
_||_