بررسی تاثیر مشخصات لایه آلومینیومی بر عملکرد آشکارساز نوری MSM سیلیکنی
محورهای موضوعی : انرژی های تجدیدپذیرمریم زارع پور 1 , حامد دهدشتی جهرمی 2
1 - دانشکده مهندسی برق- واحد فسا، دانشگاه آزاد اسلامی، فسا، شیراز، ایران
2 - دانشکده مهندسی- دانشگاه جهرم، جهرم، ایران
کلید واژه: آشکارساز نوری MSM, پاسخ نوری, جریان تاریک, جریان نوری, تابع کار,
چکیده مقاله :
آشکارساز نوری فلز-نیمههادی-فلز از دو پیوند شاتکی و روزنههایی برای جذب فوتون تشکیل شده و جریان تاریک کمی دارد. در این مقاله، به بررسی تاثیر مشخصات اتصال آلومینیومی بر جریانهای تاریک و نوری و پاسخ نوری آشکارساز فلز- نیمه هادی-فلز (MSM) سیلیکنی پرداخته شده است. با توجه به روش رشد لایه فلزی، تابع کار یک فلز میتواند در یک بازه محدود تغییر کند. تاثیر تغییرات تابع کار آلومنیوم بر عملکرد آشکارساز مذکور مطالعه شده است. پس از تعیین تابع کار بهینه لایه فلزی، تاثیر ضخامت لایه آلومینیومی بر عملکرد آشکارساز بررسی شده است. نتایج به دست آمده نشان میدهد تابع کار و ضخامت لایه آلومینیوم تاثیر مستقیمی بر جریان تاریک، جریان نوری و پاسخ نوری قطعه دارد. تاثیر این دو مولفه بر پارامترهای آشکارساز نوری مذکور به نحوی است که میتواند ساختار را از حالت آشکارسازی خارج کرده و تبدیل به یک مقاومت الکتریکی نماید. بنابراین لازم است برای ساخت، با انتخاب روش لایه نشانی مناسب و ضخامت لایه فلزی مناسب، پارامترهای مذکور بهینه شوند. در این تحقیق برای یک آشکارساز نوری MSM با ساختار متقارن، تابع کار بهینه برابر با 26/4 الکترون ولت به دست آمد. توابع کار کمتر از این مقدار منجر به ایجاد اتصال اهمی بین لایه آلومینیومی و لایه سیلیکنی و توابع کار بیشتر از این مقدار منجر به ایجاد یک پیوند شاتکی با ولتاژ شکست بسیار کم در ناحیه بایاس معکوس می شود. همچنین بهترین ضخامت لایه آلومینیومی برابر با 1/1 میکرو-متر به دست آمد. این ضخامت منجر به بیشترین مقدار پاسخ نوری در آشکارساز مورد مطالعه می شود.
Metal-Semiconductor-Metal photodetectors consist of two metallic contacts and an aperture for photon absorption. An MSM photodetector has low dark current, because one of the contacts is always in the reverse bias region. In this paper, we studied the impact of aluminum (metal contact) characteristics on the dark current, photocurrent, and photo-response of a silicon-based MSM photodetector. Metal work function has a small variation in different deposition processes. Impact of metal work function and layer thickness on the performance of MSM photodetector are studied. To this aim, an MSM photodetector is simulated and the dark current, photocurrent, and the photo-response of the structure are investigated. The analyses show that aluminum work function and thickness have a direct effect on the dark current, photocurrent, and photo-response of the photodetector which can change the structure from a photovoltaic to a photoconductive device if the mentioned parameters are not selected well. Therefore, these parameters should be optimized in the design stage. In this study, for a symmetric MSM photodetector, the optimal work function was achieved to be 4.26 eV. Work functions less than this value result in an ohmic contact between the aluminum layer and the silicon layer, and work functions more than this value result in a Schottky junction with a very low breakdown voltage in the reverse bias region which both regions degrade performance of the photodetector. Moreover, the best aluminum layer thickness was obtained to be 1.1 μm. This thickness leads to the maximized photo-response in the photodetector.
[1] S.M.S. Hashemi-Nassab, M. Imanieh, A. Kamali, S.A. Emamghorashi, S. Hassanhosseini, “Increased light absorption in CIGS solar cells with plasmonic Ag nanostructures to increase efficiency”, Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 35-49, June 2021 (dor: 20.1001.1.23223871.1400.12.1.3.9) (in Persian).
[2] S. Jafari, A. Esmaeilian-Marnani, “Improved fiber bragg grating bending-sensor using TE/TM modes”, Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 30, pp. 33-44, June 2017 (in Persian).
[3] H. Moradmand, E. Adib, B. Fani, “Investigation and improvement of high step-up DC-DC converters for PV module applications”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 28, pp. 35-44, June 2017 (in Persian).
[4] S. Sorifi, M. Moun, S. Kaushik, R. Singh, “High-temperature performance of a GaSe nanosheet-based broadband photodetector”, ACS Applied Electronic Materials, vol 2, no. 3, pp. 670−676, Feb. 2020 (doi: 10.1021/acsaelm.9b00770).
[5] S.V. Averin, P.I. Kuznetzov, V.A. Zhitov, L. Yu. Zakharov, V.M. Kotov, “MSM‑photodetector with ZnSe/ZnS/GaAs Bragg reflector”, Optical and Quantum Electronics, vol. 52, no. 2, pp. 1-7, Jan. 2020 (doi: 10.1007/s11082-020-2213-1).
[6] X.X. Gong, G.T. Fei, W.B. Fu, B.N. Zhong, X.D. Gao, L.D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time”, Applied Surface Science, vol. 404, pp. 7-11, May 2017 (doi: 10.1016/j.apsusc.2017.01.246).
[7] S.V. Averin, P.I. Kuznetzov, V.A. Zhitov, L.Y. Zakharov, V.M. Kotov, “Electrical, optical and spectral characteristics of type‑II ZnSe/ZnTe/GaAs superlattice and MSM‑photodetector on their base”, Optical and Quantum Electronics, vol. 50, no.10, pp. 1-8, Sept. 2018 (doi: 10.1007/s11082-018-1623-9).
[8] M.A. Kinch, “Fundamental physics of infrared detector materials”, Journal of Electronic Materials, vol. 29, no.6, pp. 809-817, June 2000 (doi: 10.1007/s11664-000-0229-7).
[9] F.P. Arquer, A. Armin, P. Meredith, E.H. Sargent, "Solution-processed semiconductors for next-generation photodetectors", Nature Reviews Materials, vol. 2, no. 3, pp. 1-17, Jan. 2017 (doi: 10.1038/natrevmats.2016.100).
[10] S. Umar, C. Santato, K. . Karim. "Lateral organic semiconductor photodetector. Part I: Use of an insulating layer for low dark current", IEEE Trans. on Electron Devices, vol. 61, no.10, pp. 3465-3471, Oct. 2014 (doi: 10.1109/TED.2014.2348540).
[11] S. Liwen, M. Liao, M. Sumiya, "A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures", Sensors, vol. 13, no. 8, pp. 10482-10518, Aug. 2013 (doi: 10.3390/s130810482).
[12] M. Muhammad, S. Ghanbarzadeh, C.H. Lee, C. Con, K.S. Karim, “Nanocrystalline silicon lateral MSM photodetector for infrared sensing applications”, IEEE Trans. on Electron Devices, vol. 65, no. 2, pp. 584-590, Feb. 2018 (doi: 10.1109/TED.2017.2782769).
[13] F. Nazia, N. Pradeep, J. Balakrishnan, “Green synthesis of graphene quantum dots and the dual application of graphene quantum dots-decorated flexible MSM p-type ZnO device as UV photodetector and piezotronic generator”, Bulletin of Materials Science, vol. 44, no. 1, pp. 1-11, Feb. 2021 (doi: 10.1007/s12034-020-02326-w).
[14] M. Ainorkhilah, Z. Hassan, A.F. Abd-Rahim, R. Radzali, M.D.J. Ooi, N.M. Ahmed, "Enhancing performance of porous Si-doped GaN based MSM photodetector using 50 Hz ACPEC", Journal of Physics: Conference Series. vol. 1535. no. 1, June 2020, (doi: 10.1088/1742-6596/1535/1/012006).
[15] Y. M. Z Mohd, A. Mahyuddin, Z. Hassan. "Fabrication of AlN/GaN MSM photodetector with platinum as schottky contacts", Materials Research Express, vol. 6, no. 11, pp.1-7, Nov. 2019 (doi: 10.1088/2053-1591/ab4a40).
[16] A. Anas, M. Devarajan, N. Afzal, "Fabrication and characterization of high performance MSM UV photodetector based on NiO film", Sensors and Actuators A: Physical, vol. 262, pp. 78-86, Aug. 2017 (doi: 10.1016/j.sna.2017.05.028).
[17] H. Bencherif, L. Dehimi, G. Messina, P. Vincent, F. Pezzimenti, F.G.D. Corte, "An optimized graphene/4H-SiC/graphene MSM UV-photodetector operating in a wide range of temperature", Sensors and Actuators A: Physical, vol. 307, pp 1-12, June 2020 (doi: 10.1016/j.sna.2020.112007).
[18] Y. Firat, W. Fan, Z. Ma, "Flexible amorphous GeSn MSM photodetectors", IEEE Photonics Journal, vol. 10, vol. 2, pp. 1-9, April 2018, (doi: 10.1109/JPHOT.2018.2804360).
[19] D. Linpeng, J. Yu, R. Jia, J. Hu, Y. Zhang, J. Sun, "Self-powered MSM deep-ultraviolet β-Ga2O3 photodetector realized by an asymmetrical pair of Schottky contacts", Optical Materials Express, vol. 9, no. 3, pp. 1191-1199, March 2019 (doi: 10.1364/OME.9.001191).
[20] Z. Changjian, S. Raju, B. Li, M. Chan, Y. Chai, C.Y. Yang, "Self‐driven metal–semiconductor–metal WSe2 photodetector with asymmetric contact geometries", Advanced Functional Materials, vol. 28, no. 45, pp. 1-8, September 2018 (doi: 10.1002/adfm.201802954).
[21] J. Shubhendra, S. Krishna, N. Aggarwal, R. Kumar, A. Gundimeda, S.C. Husale, V. Gupta, G. Gupta, "Effect of metal contacts on a GaN/sapphire-based MSM ultraviolet photodetector", Journal of Electronic Materials, vol. 47, no. 10, pp. 6086-6090, July 2018 (doi: 10.1007/s11664-018-6501-5).
[22] P. Jin-Hong, H.Y. Yu, "Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area", Optics letters, vol. 36, no. 7, pp. 1182-1184, April 2011 (doi: 10.1364/OL.36.001182).
[23] J.S. Kumar, N. Aggarwal, S. Krishna, R. Kumar, S. Husale, V. Gupta, G. Gupta, "GaN-UV photodetector integrated with asymmetric metal semiconductor metal structure for enhanced responsivity", Journal of Materials Science: Materials in Electronics, vol. 29, no. 11, pp 8958-8963, March 2018 (doi: 10.1007/s10854-018-8917-3).
[24] W. Qi, C. Zhou, Y. Chai, "Breaking symmetry in device design for self-driven 2D material based photodetectors", Nanoscale, vol. 12, no. 15, pp. 8109-8118, April 2020 (doi: 10.1039/D0NR01326A).
[25] J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G.V. Plessen, U. Lemmer, “Optimized design of plasmonic MSM photodetector”, IEEE Journal of Quantum Electronics, vol. 43, no. 10, pp. 855-859, Oct. 2007 (doi: 10.1109/JQE.2007.902934).
[26] V. Dhyani, S. Das, “High speed MSM photodetector based on Ge nanowires network”, Semiconductor Science and Technology, vol 32, no 5, pp. 055008, May 2017 (doi: 10.1088/1361-6641/aa65b4).
[27] R. Radzali, M.Z. Zakariah, A. Mahmood, A.F. Abd-Rahim, Z. Hassan, Y. Yusof, “The effect of ecthing duration on structural properties of porous Si fabricated by a new two-steps alternating current photo-assisted electrochemical etching (ACPEC) technique for MSM photodetector”, AIP Conference Proceedings. vol. 1875. no. 1, pp. 1-10, Aug. 2017 (doi: 10.1063/1.4998357).
[28] N. Sangwaranatee, I. Srithanachai, S. Niemcharoen, "Effect of Pt-doped on the photocurrent of MSM photodetector", Journal of Physics: Conference Series, vol. 1921. no. 1, May 2021 (doi:10.1088/1742-6596/1921/1/012104)
[29] C.J. Fall, N. Binggeli, A. Baldereschi, “Anomaly in the anisotropy of the aluminum work function”, Physical Review B, vol. 58, no. 12, Sept. 1998 (doi: 10.1103/PhysRevB.58.R7544).
[30] T. Yoshinori, M. Yoshiki, J. Koga, A. Nishiyama, M. Koyama, M. Ogawa, S. Zaima, “Effective work function control with aluminum postdoping in the Ni silicide/HfSiON systems”, IEEE Trans. on Electron Devices, vol. 55, no. 10, pp. 2648-2656, Oct. 2008 (doi: 10.1109/TED.2008.2003026).
[31] X. Mingshan, J. Xie, W. Li, F. Wang, J. Ou, C. Yang, C. Li, Z. Zhong, Z. Jiang. “Changes in surface morphology and work function caused by corrosion in aluminum alloys.”, Journal of Physics and Chemistry of Solids, vol. 73, no. 6, pp. 781-787, June 2012 (doi: 10.1016/j.jpcs.2012.01.025).
[32] C.J. Adenilson, C.A. Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo, E.R. Leite, "Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices", Journal of Physics: Condensed Matter, vol. 24, no. 22, June 2012 (doi: 10.1088/0953-8984/24/22/225303).
[33] H.D. Jahromi, M.H. Sheikhi, “A pin-hole free architecture for vertical infrared photodetectors based on thin-film organic/inorganic hybrid nanocomposite”, IEEE Sensors Journal, vol. 16, no. 6, pp. 1634-1640, March 2016 (doi: 10.1109/JSEN.2015.2506661).
_||_[1] S.M.S. Hashemi-Nassab, M. Imanieh, A. Kamali, S.A. Emamghorashi, S. Hassanhosseini, “Increased light absorption in CIGS solar cells with plasmonic Ag nanostructures to increase efficiency”, Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 35-49, June 2021 (dor: 20.1001.1.23223871.1400.12.1.3.9) (in Persian).
[2] S. Jafari, A. Esmaeilian-Marnani, “Improved fiber bragg grating bending-sensor using TE/TM modes”, Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 30, pp. 33-44, June 2017 (in Persian).
[3] H. Moradmand, E. Adib, B. Fani, “Investigation and improvement of high step-up DC-DC converters for PV module applications”, Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 28, pp. 35-44, June 2017 (in Persian).
[4] S. Sorifi, M. Moun, S. Kaushik, R. Singh, “High-temperature performance of a GaSe nanosheet-based broadband photodetector”, ACS Applied Electronic Materials, vol 2, no. 3, pp. 670−676, Feb. 2020 (doi: 10.1021/acsaelm.9b00770).
[5] S.V. Averin, P.I. Kuznetzov, V.A. Zhitov, L. Yu. Zakharov, V.M. Kotov, “MSM‑photodetector with ZnSe/ZnS/GaAs Bragg reflector”, Optical and Quantum Electronics, vol. 52, no. 2, pp. 1-7, Jan. 2020 (doi: 10.1007/s11082-020-2213-1).
[6] X.X. Gong, G.T. Fei, W.B. Fu, B.N. Zhong, X.D. Gao, L.D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time”, Applied Surface Science, vol. 404, pp. 7-11, May 2017 (doi: 10.1016/j.apsusc.2017.01.246).
[7] S.V. Averin, P.I. Kuznetzov, V.A. Zhitov, L.Y. Zakharov, V.M. Kotov, “Electrical, optical and spectral characteristics of type‑II ZnSe/ZnTe/GaAs superlattice and MSM‑photodetector on their base”, Optical and Quantum Electronics, vol. 50, no.10, pp. 1-8, Sept. 2018 (doi: 10.1007/s11082-018-1623-9).
[8] M.A. Kinch, “Fundamental physics of infrared detector materials”, Journal of Electronic Materials, vol. 29, no.6, pp. 809-817, June 2000 (doi: 10.1007/s11664-000-0229-7).
[9] F.P. Arquer, A. Armin, P. Meredith, E.H. Sargent, "Solution-processed semiconductors for next-generation photodetectors", Nature Reviews Materials, vol. 2, no. 3, pp. 1-17, Jan. 2017 (doi: 10.1038/natrevmats.2016.100).
[10] S. Umar, C. Santato, K. . Karim. "Lateral organic semiconductor photodetector. Part I: Use of an insulating layer for low dark current", IEEE Trans. on Electron Devices, vol. 61, no.10, pp. 3465-3471, Oct. 2014 (doi: 10.1109/TED.2014.2348540).
[11] S. Liwen, M. Liao, M. Sumiya, "A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures", Sensors, vol. 13, no. 8, pp. 10482-10518, Aug. 2013 (doi: 10.3390/s130810482).
[12] M. Muhammad, S. Ghanbarzadeh, C.H. Lee, C. Con, K.S. Karim, “Nanocrystalline silicon lateral MSM photodetector for infrared sensing applications”, IEEE Trans. on Electron Devices, vol. 65, no. 2, pp. 584-590, Feb. 2018 (doi: 10.1109/TED.2017.2782769).
[13] F. Nazia, N. Pradeep, J. Balakrishnan, “Green synthesis of graphene quantum dots and the dual application of graphene quantum dots-decorated flexible MSM p-type ZnO device as UV photodetector and piezotronic generator”, Bulletin of Materials Science, vol. 44, no. 1, pp. 1-11, Feb. 2021 (doi: 10.1007/s12034-020-02326-w).
[14] M. Ainorkhilah, Z. Hassan, A.F. Abd-Rahim, R. Radzali, M.D.J. Ooi, N.M. Ahmed, "Enhancing performance of porous Si-doped GaN based MSM photodetector using 50 Hz ACPEC", Journal of Physics: Conference Series. vol. 1535. no. 1, June 2020, (doi: 10.1088/1742-6596/1535/1/012006).
[15] Y. M. Z Mohd, A. Mahyuddin, Z. Hassan. "Fabrication of AlN/GaN MSM photodetector with platinum as schottky contacts", Materials Research Express, vol. 6, no. 11, pp.1-7, Nov. 2019 (doi: 10.1088/2053-1591/ab4a40).
[16] A. Anas, M. Devarajan, N. Afzal, "Fabrication and characterization of high performance MSM UV photodetector based on NiO film", Sensors and Actuators A: Physical, vol. 262, pp. 78-86, Aug. 2017 (doi: 10.1016/j.sna.2017.05.028).
[17] H. Bencherif, L. Dehimi, G. Messina, P. Vincent, F. Pezzimenti, F.G.D. Corte, "An optimized graphene/4H-SiC/graphene MSM UV-photodetector operating in a wide range of temperature", Sensors and Actuators A: Physical, vol. 307, pp 1-12, June 2020 (doi: 10.1016/j.sna.2020.112007).
[18] Y. Firat, W. Fan, Z. Ma, "Flexible amorphous GeSn MSM photodetectors", IEEE Photonics Journal, vol. 10, vol. 2, pp. 1-9, April 2018, (doi: 10.1109/JPHOT.2018.2804360).
[19] D. Linpeng, J. Yu, R. Jia, J. Hu, Y. Zhang, J. Sun, "Self-powered MSM deep-ultraviolet β-Ga2O3 photodetector realized by an asymmetrical pair of Schottky contacts", Optical Materials Express, vol. 9, no. 3, pp. 1191-1199, March 2019 (doi: 10.1364/OME.9.001191).
[20] Z. Changjian, S. Raju, B. Li, M. Chan, Y. Chai, C.Y. Yang, "Self‐driven metal–semiconductor–metal WSe2 photodetector with asymmetric contact geometries", Advanced Functional Materials, vol. 28, no. 45, pp. 1-8, September 2018 (doi: 10.1002/adfm.201802954).
[21] J. Shubhendra, S. Krishna, N. Aggarwal, R. Kumar, A. Gundimeda, S.C. Husale, V. Gupta, G. Gupta, "Effect of metal contacts on a GaN/sapphire-based MSM ultraviolet photodetector", Journal of Electronic Materials, vol. 47, no. 10, pp. 6086-6090, July 2018 (doi: 10.1007/s11664-018-6501-5).
[22] P. Jin-Hong, H.Y. Yu, "Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area", Optics letters, vol. 36, no. 7, pp. 1182-1184, April 2011 (doi: 10.1364/OL.36.001182).
[23] J.S. Kumar, N. Aggarwal, S. Krishna, R. Kumar, S. Husale, V. Gupta, G. Gupta, "GaN-UV photodetector integrated with asymmetric metal semiconductor metal structure for enhanced responsivity", Journal of Materials Science: Materials in Electronics, vol. 29, no. 11, pp 8958-8963, March 2018 (doi: 10.1007/s10854-018-8917-3).
[24] W. Qi, C. Zhou, Y. Chai, "Breaking symmetry in device design for self-driven 2D material based photodetectors", Nanoscale, vol. 12, no. 15, pp. 8109-8118, April 2020 (doi: 10.1039/D0NR01326A).
[25] J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G.V. Plessen, U. Lemmer, “Optimized design of plasmonic MSM photodetector”, IEEE Journal of Quantum Electronics, vol. 43, no. 10, pp. 855-859, Oct. 2007 (doi: 10.1109/JQE.2007.902934).
[26] V. Dhyani, S. Das, “High speed MSM photodetector based on Ge nanowires network”, Semiconductor Science and Technology, vol 32, no 5, pp. 055008, May 2017 (doi: 10.1088/1361-6641/aa65b4).
[27] R. Radzali, M.Z. Zakariah, A. Mahmood, A.F. Abd-Rahim, Z. Hassan, Y. Yusof, “The effect of ecthing duration on structural properties of porous Si fabricated by a new two-steps alternating current photo-assisted electrochemical etching (ACPEC) technique for MSM photodetector”, AIP Conference Proceedings. vol. 1875. no. 1, pp. 1-10, Aug. 2017 (doi: 10.1063/1.4998357).
[28] N. Sangwaranatee, I. Srithanachai, S. Niemcharoen, "Effect of Pt-doped on the photocurrent of MSM photodetector", Journal of Physics: Conference Series, vol. 1921. no. 1, May 2021 (doi:10.1088/1742-6596/1921/1/012104)
[29] C.J. Fall, N. Binggeli, A. Baldereschi, “Anomaly in the anisotropy of the aluminum work function”, Physical Review B, vol. 58, no. 12, Sept. 1998 (doi: 10.1103/PhysRevB.58.R7544).
[30] T. Yoshinori, M. Yoshiki, J. Koga, A. Nishiyama, M. Koyama, M. Ogawa, S. Zaima, “Effective work function control with aluminum postdoping in the Ni silicide/HfSiON systems”, IEEE Trans. on Electron Devices, vol. 55, no. 10, pp. 2648-2656, Oct. 2008 (doi: 10.1109/TED.2008.2003026).
[31] X. Mingshan, J. Xie, W. Li, F. Wang, J. Ou, C. Yang, C. Li, Z. Zhong, Z. Jiang. “Changes in surface morphology and work function caused by corrosion in aluminum alloys.”, Journal of Physics and Chemistry of Solids, vol. 73, no. 6, pp. 781-787, June 2012 (doi: 10.1016/j.jpcs.2012.01.025).
[32] C.J. Adenilson, C.A. Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo, E.R. Leite, "Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices", Journal of Physics: Condensed Matter, vol. 24, no. 22, June 2012 (doi: 10.1088/0953-8984/24/22/225303).
[33] H.D. Jahromi, M.H. Sheikhi, “A pin-hole free architecture for vertical infrared photodetectors based on thin-film organic/inorganic hybrid nanocomposite”, IEEE Sensors Journal, vol. 16, no. 6, pp. 1634-1640, March 2016 (doi: 10.1109/JSEN.2015.2506661).