کنترل ترکیبی مستقیم گشتاور موتورهای القایی با رویکرد افزایش عمر مفید باتری در وسائل نقلیه الکتریکی
محورهای موضوعی : انرژی های تجدیدپذیرحمیدرضا اسکندری 1 , محمدرضا مرادیان 2
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: موتور القایی, خودرو الکتریکی, کنترل مستقیم گشتاور, کنترل پیشبین, بهینهسازی تلفات,
چکیده مقاله :
استفاده گسترده از موتورهای القایی به عنوان نیرو محرکه خودروهای الکتریکی، نیاز به بهبود سیستم کنترلی این موتورها در جهت بهبود راندمان را بیش از پیش مطرح نموده است. این امر میتواند موجب افزایش مسافت طی شدهی خودرو الکتریکی در هر بار شارژ و در نهایت افزایش طول عمر باتری گردد. در راستای این کار، یک روش کنترل مستقیم گشتاور مبتنی بر کنترل پیشبین و همچنین یک روش کنترل مستقیم گشتاور بهینه بررسی و مقایسه شده است. در روش کنترل پیشبین مستقیم گشتاور، بردار ولتاژ مرجع بر اساس کنترل پیشبین به گونهای تعیین میشود که مقادیر گشتاور و شار در سریعترین زمان ممکن برابر مقادیر مرجع شوند. روش کنترل مستقیم گشتاور بهینه نیز مبتنی بر محاسبه شار مرجع بهینه استاتور براساس گشتاور بار میباشد. برای مقایسه و ارزیابی عملکرد کنترلکنندهها، روشهای پیشنهادی به همراه روش کنترل مستقیم گشتاور متداول بر روی یک موتور القایی در نرم افزار متلب شبیهسازی شده است. نتایج شبیهسازی نشان میدهد که روش کنترل مستقیم گشتاور بهینه در حالت بیباری و روش کنترل پیشبین مستقیم گشتاور در زمان اعمال بار به موتور دارای بالاترین راندمان، کمترین دامنه جریان و ریپل گشتاور میباشد. از این رو در این مقاله روش کنترل ترکیبی مستقیم گشتاور ارائه میگردد. روش مورد نظر در حالت بیباری از کنترل مستقیم گشتاور بهینه و در زمان اعمال بار از کنترل پیشبین مستقیم گشتاور استفاده میکند. این روش دارای بهترین عملکرد جهت افزایش طول عمر مفید باتری در وسائل نقلیه الکتریکی میباشد.
The widespread utilization of induction motors as a driving force of electric vehicles has recognized the necessity for upgrading control system of these motors even more than ever before, in order to improve efficiency and reduce the torque ripple. This matter can lead to increase in the distance traveled by the electric vehicle at each charge and ultimately Increase the battery life. To this end, a predictive direct torque control method, as well as an optimal direct torque control method, was proposed. In the predictive direct torque control method, the reference voltage vector based on the predictive control is determined so that both the torque value and the charge value are equal to the reference values as quickly as possible. The optimal direct torque control method is also based on calculating the optimal stator reference flux according to the load torque. For comparison and evaluating the performance of controllers optimal direct torque control method and predictive direct torque control method along with the conventional direct torque control method, are simulated on an induction motor. Simulation results demonstrate that optimal direct torque control method in no-load mode and predictive direct torque control method when applying load have the highest efficiency, lowest current amplitude and torque ripple. Therefore in this paper, direct torque compound control method is presented. This method it uses optimal direct torque control in no-load and predictive direct torque control when applying load. This method has the best performance to increase battery life in electric vehicles.
[1] T. Munteanu, E. Rosu, M. Gaiceanu, R. Paduraru, T. Dumitriu, M. Culea, C. Dache, "The optimal control for position system with induction machine", Proceeding of the IEEE/ECPEA, Barcelona, Spain, Sept. 2009.
[2] A. Haddoun, M.E.H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, K. Srairi, "A loss-minimization DTC scheme for EV induction motors", IEEE Trans. on Vehicular Technology, vol. 56, no. 1, pp. 81-88, Jan. 2007 (doi: 10.1109/TVT.2006.889562).
[3] S. Shukla, B. Singh, "MPPT control technique for solar powered direct torque control of induction motor drive with a robust speed and parameters adaptation scheme for water pumping", IET Renewable Power Generation, vol. 13, no. 2, pp. 273–284, Jan. 2019 (doi:10.1049/iet-rpg.2018.5390).
[4] I. Sami, B. Khan, A. Rafiq, A.M. Chaudhry, M.A. S, Z. Ullah, A. Basit, "Sliding Mode-Based Model Predictive Torque Control of Induction Machine", Proceeding of the IEEE/ICEET, Lahore, Pakistan, 13 May 2019 (doi: 10.1109/CEET1.2019.8711870).
[5] F. Sedaghati, S.H. Latifi “Application of a three-phase multilevel inverter for DTC based induction motor drive,”Proceeding of the IEEE/PEDSTC, pp. 443-448, Feb. 2018 (doi: 10.1109/PEDSTC.2018.8343838).
[6] M.R. Nikzad , B. Asaei and S.O. Ahmadi, "Discrete duty-cycle-control method for direct torque control of induction motor drives with model predictive solution", IEEE Trans. on Power Electronics, vol. 33, no. 3, pp. 2317- 2329, March 2018 (doi: 10.1109/PEDSTC.2018.8343838).
[7] M.T. Sadeghzadeh, G.R. Arab, A.H. Mirzaian, S.M. Madani, "Effects of direct torque control switching strategies on common voltage and bearing current", Journal of Intelligent Procedures in Electrical Technology, vol. 3, no. 10, pp. 11-18, Summer 2012.
[8] S. Gudhe, B.B. Pimple, "Improved torque response of induction motor drive using direct torque control technique applying Fuzzy Logic Control", Proceeding of the IEEE/ (ICPEICES), pp. 1-6, 16 February 2017 (doi: 10.1109/ICPEICES.2016.7853611).
[9] G. Brando, A. Dannier, A. Del Pizzo, R. Renato, I. Spina, "Torque derivative control in induction motor drives supplied by multilevel inverters", IET Power Electronics., vol. 9, no. 11, pp. 2249-2261, 2016 (doi: 10.1049/iet-pel.2014.0958).
[10] C. Lascu, S. Jafarzadeh, M.S. Fadali, F. Blaabjerg, "Direct torque control with feedback linearization for induction motor drives", IEEE Trans. on Power Electronics, vol. 32, no. 3, pp. 2072-2080, March 2017 (doi: 10.1109/TPEL.2016.2564943).
[11] M. Pacas and J. Weber, "Predictive direct torque control for the PM synchronous machine", IEEE Trans. on Industrial Electronics, vol. 52, no. 5, pp. 1350-1356, Oct. 2005 (doi: 10.1109/TIE.2005.855662).
[12] L. Joong-Hui, K. Chang-Gyun,Y.Myung-Joong, "A dead-beat type digital controller for the direct torque control of an induction motor", IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 739-746, Sep. 2002 (doi: 10.1109/TPEL.2002.802174).
[13] Xu. Z, R. M.F, "A variable structure torque and flux controller for a DTC IPM synchronous motor drive", Proceeding of the IEEE/CSEPA, vol. 1, pp. 445-450, June 2004 (doi: 10.1109/PESC.2004.1355787).
[14] G.R. Arab-Markadeh, F. Taki, S. Abazari, "Modulation of current source inverter", Journal of Intelligent Procedures in Electrical Technology, vol. 2, no. 5, pp. 25-30, Summer 2011.
[15] J. Rodriguez, J. Pontt, C. Silva, R. Huerta, H.Miranda, "Simple direct torque control of induction machine using space vector modulation", Proceeding of the IET/Electronics Letters, vol. 40, no. 7, pp. 412-413, 1 April 2004 (doi: 10.1049/el:20040299).
[16] C. Hengbin, C. Chen, J. Wei, H. Liming, "Direct torque control method of induction machines using three-level space vector modulation", Proceeding of the IEEE/CCM, Wuhan. China, 07 July 2009 (doi: 10.1109/IPEMC.2009.5157454).
[17] M.R. Douiri, M. Cherkaoui, "Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives", Frontiers in Energy, vol. 7, pp. 456–467, 2013 (doi: 10.1007/s11708-013-0264-8).
[18] Sh. Kuo-Kai, L. Juu-Kuh, P. Van-Truong, Y. Ming-Ji, W. Te-Wei, "Global minimum torque ripple design for direct torque control of induction motor drives", IEEE Trans. on Industrial Electronics, vol. 57, no. 9, pp. 3148 – 3156, Sept. 2010 (doi: 10.1109/TIE.2009.2038401).
[19] F. Tazerart, Z.Mokrani, D.Rekioua, T. Rekioua, "Direct torque control implementation with lossesminimization of induction motor for electric vehicle applications with high operating life of the battery”, International Journal of Hydrogen Energy", vol. 40, no. 39, pp. 13827-13838, Oct. 2015 (doi: 10.1016/j.ijhydene. 2015.04.052).
[20] E. Mendes, A. Baba, A. Razek, "Losses minimization of a field oriented controlled induction machine", Proceeding of the IEEE/ICEMD, Durham, UK, Sept. 1995 (doi: 10.1049/cp:19950885).
[21] B. Metidji, N. Taib, L. Baghli, T. Rekioua, S. Bacha. "Low-cost direct torque control algorithm for induction motor without ac phase current sensors", IEEE Trans. on Power Electron, vol. 27 no. 9, pp. 4132-4139, 03 April 2012 (doi: 10.1109/TPEL.2012.2190101).
[22] F. Abrahamsen, F. Blaabjerg, J.K. Pedersen, P.Z. Grabowski, P. Thogersen, "On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications", IEEE Trans. on Industry Applications, vol. 34, no. 4, pp. 822-831, July/Aug.1998 (doi: 10.1109/28.703985).
[23] F. J.F. Stumper, A. Dotlinger, R. Kennel, "Loss minimization of induction machines in dynamic operation", IEEE Trans. on Energy Conversion, vol. 28, no. 3, pp. 726-735, May 2013 (doi: 10.1109/TEC.2013.2262048).
[24] F. Alonge, F.D. Ippolito, A. Sferlazza, "Sensorless control ofinduction-motor drive based on robust kalman filter and adaptive speedestimation", IEEE Trans. on Industrial Electronics, vol. 61, no. 3, pp. 1444-1453, April 2013 (doi: 10.1109/TIE.2013.2257142).
[25] N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella, "Opti-mization of delayed-state kalman-filter-based algorithm via differentialevolution for sensorless control of induction motors", IEEE Trans. on Industrial Electronics, vol. 57, no. 1, pp. 385-394, Oct. 2009 (doi: 10.1109/TIE.2009.2033489).
[26] M. Ouhrouche, R. Errouissi, A.M. Trzynadlowski, K. Tehrani.Arab, "A Novel Predictive Direct Torque Controller for Induction Motor Drives", IEEE Trans. on Industrial Electronics, vol. 63, no. 8, pp. 5221-5230, Aug. 2016 (doi: 10.1109/TIE.2016.2558140).
_||_