روش جدید تخمین امید هزینه خرابی ترانسفورماتورهای قدرت موازی
محورهای موضوعی : انرژی های تجدیدپذیرهادی شمس سولاری 1 , بهروز مجیدی 2 , مجید معظمی 3
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: قابلیت اطمینان, امید هزینه خرابی, ترانسفورماتورهای قدرت, فرآیند پواسون, هزینه ریسک, همبستگی خرابی,
چکیده مقاله :
ارزیابی سطح ریسک سیستم های قدرت و کاهش هزینههای در ارتباط با اثرات مخرب آن، به یکی از چالشهای اساسی بهرهبرداری و برنامهریزی صنعت برق تبدیل شده است. در این مقاله یک روش جدید به منظور مدل سازی ریاضی همبستگی خرابی ترانسفورماتورهای موازی با استفاده از فرآیند پواسون و تابع مفصل گوسی چند متغیره ارائه شده است. در این روش با محاسبه شاخصهای انتخابی قابلیت اطمینان و هزینههای مرتبط با آن، یک روش مدل سازی به منظور تخمین امید ریاضی هزینه خرابی تراسفورماتورهای موازی با همبستگی خرابی و هزینه ریسک سالیانه سیستم قدرت پیشنهاد داده شده است. با توجه به توانایی تولید فرآیند گذر حالت واقعی سیستم برای شبیهسازی همبستگی و احتمال خرابی ترانسفورماتورهای موازی، از روش مونتکارلو ترتیبی برای محاسبه شاخصهای قابلیت اطمینان سیستم و همچنین تخمین هزینههای مذکور استفاده شده است. نتایج شبیهسازی روش پیشنهادی نشان میدهد که افزایش احتمال همبستگی خرابی ترانسفورماتورهای موازی در پستهای برق به صورت سالیانه، منجر به افزایش امید هزینه خرابی آنها، افزایش سطح و هزینه کل ریسک سیستم قدرت خواهد شد.
Risk level evaluation of power systems and reduction of its related destructive effects costs have been transformed to one of the basic challenges in power industry’s operation and scheduling. In this paper a new method for mathematical modeling of failure correlation of parallel transformers using Poisson process and multi-Gaussian Copula function is presented. In this method, by using computation of selected reliability indices and related costs, a modeling method for estimation of expectation value of failure cost of parallel transformers with failure correlation and also cost of annual risk of power system has been proposed. According to the capability of production of stage-gate process of the system real mode and failure correlation and probability of parallel transformers, sequential Monte Carlo method for calculation of system’s reliability indices and related costs estimation has been employed. Simulation results of the proposed method show that annual increase of failure correlation probability of parallel transformers in power stations, will lead to increase of expectation value of their failure, level and cost of power system’s risk.
[1] L. Wenyuan, "Risk assessment of power systems models, methods and applications", Wiley Press, New Jersey, USA. 2005.
[2] L. Wu, M. Shahidehpour, T. Li, "Cost of reliability analysis based on stochastic unit commitment", IEEE Trans. on Power System, vol. 23, no. 3, pp. 1364 – 1374, Aug. 2008 (doi: 10.1109/TPWRS.2008.922231).
[3] G. Qiu, C. Xia, H. Zhang, "Estimation of failure cost in life cycle cost of power equipment", Proceeding of the IEEE/APPEEC, pp. 1-4, Wuhan, China, March 2011 (doi: 10.1109/APPEEC.2011.5747691).
[4] Z. Fu-min, M. Li, L. Nian, C. Jin-shan, "Assessment for distribution network planning schemes of urban electric power system", Energy Procedia, vol. 14, pp. 1067-1074, Mar. 2012 (doi: 10.1016/j.egypro.2011.12.1056).
[5] W. Li, E. Vaahedi, Y. Mansour, "Determining number and timing of substation spare transformers using a probabilistic cost analysis approach", IEEE Trans. on Power Delivery, vol. 14, no. 3, pp. 934 – 939, July 1999 (doi: 10.1109/61.772337).
[6] H. Golmakani, M. Pouresmaeeli, "Optimal replacement threshold and inspection interval for condition-based maintenance with variable failure cost", Proceeding of the IEEE/IEEM, pp. 1944-1948, Hong Kong, China, Dec. 2012 (doi: 10.1109/IEEM.2012.6838085).
[7] M Bazrafshan, N Gatsis, "Comprehensive modeling of three-phase distribution systems via the bus admittance matrix", IEEE Trans. on Power Systems, vol. 33, no. 2, pp. 2015-2029, March. 2018 (doi: 10.1109/TPWRS.2017.2728618).
[8] X. Zhou, Z. Liu, Y. Guo, C. Zhao, J. Huang, L. Chen, "Gradient-based multi-area distribution system state estimation", IEEE Trans. on Smart Grid, Early Access 2020 (doi: 10.1109/TSG.2020.3003897).
[9] E. Jalalabadi, A. Rahimi-Kian, ''Real-time risk and cost management of a grid connected micro-grid'', Proceeding of the IEEE/CIRED, pp. 10-13, Stockholm, Sweden, June 2013 (doi: 10.1049/cp.2013.0544).
[10] M. Hormozi, B. Bahmani-Firoozi, T. Niknam, “Bi-level energy management optimization in multi-area smart grids”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 29-40, Summer 2020 (in Persian).
[11] H. S. Solari, B. Majidi, M. Moazzami, “Optimal estimation of Weibull distribution parameters in order to provide preventive-corrective maintenance program for power transformers”, vol. 15, no. 4, pp. 536-544, Dec. 2019.
[12] F. Campelo, L. Batista, R. Takahashi, H. Diniz, E. Carrano,"Multicriteria transformer asset management with maintenance and planning perspectives'', IET Generation, Transmission and Distribution, vol. 10, no. 9, pp. 2087-2097, June 2016 (doi: 10.1049/iet-gtd.2015.1112).
[13] M. Mahdavian, N. Behzadfar, “A review of wind energy conversion system and application of various induction generators”, Journal of Novel Researches on Electrical Power, vol. 8, no. 4, pp. 55-66, Winter 2020 (in Persian).
[14] J. Zhong, W. Li, C. Wang, J. Yu, R. Xu, "Determining optimal inspection intervals in maintenance considering equipment aging failures", IEEE Trans. on Power System, vol. 32, no. 2, pp. 1474 – 1482, March 2017, (doi: 10.1109/TPWRS.2016.2580508).
[15] B. Yang, ''Reliability of parallel connected power transformers with failure correlation and its preventive maintenance'', Proceeding of the IEEE/ICEMS), Hangzhou, China, Oct. 2014 (doi: 10.1109/ICEMS.2014.7013623).
[16] A. Sklar, ''Function’s de repartition a dimensions et leurs marges'', Publications de l’Institut de Statistique de L’Université de Paris, vol. 8, pp. 229-231, 1959.
[17] J. Aghaei, N. Amjady, A. Baharvandi, M. Akbari, ''Generation and transmission expansion planning: MILP–based probabilistic model'', IEEE Trans. on Power System, vol. 29, no. 4, pp. 1592 – 1601, July 2014, (doi: 10.1109/TPWRS.2013.2296352).
[18] B. Taheri, S. Hosseini, H. Askarian-Abyaneh, F. Razavi, “A new inrush current detection method based on current Lissajous figure”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 40, pp. 43-54, Winter 2020 (in Persian).
_||_[1] L. Wenyuan, "Risk assessment of power systems models, methods and applications", Wiley Press, New Jersey, USA. 2005.
[2] L. Wu, M. Shahidehpour, T. Li, "Cost of reliability analysis based on stochastic unit commitment", IEEE Trans. on Power System, vol. 23, no. 3, pp. 1364 – 1374, Aug. 2008 (doi: 10.1109/TPWRS.2008.922231).
[3] G. Qiu, C. Xia, H. Zhang, "Estimation of failure cost in life cycle cost of power equipment", Proceeding of the IEEE/APPEEC, pp. 1-4, Wuhan, China, March 2011 (doi: 10.1109/APPEEC.2011.5747691).
[4] Z. Fu-min, M. Li, L. Nian, C. Jin-shan, "Assessment for distribution network planning schemes of urban electric power system", Energy Procedia, vol. 14, pp. 1067-1074, Mar. 2012 (doi: 10.1016/j.egypro.2011.12.1056).
[5] W. Li, E. Vaahedi, Y. Mansour, "Determining number and timing of substation spare transformers using a probabilistic cost analysis approach", IEEE Trans. on Power Delivery, vol. 14, no. 3, pp. 934 – 939, July 1999 (doi: 10.1109/61.772337).
[6] H. Golmakani, M. Pouresmaeeli, "Optimal replacement threshold and inspection interval for condition-based maintenance with variable failure cost", Proceeding of the IEEE/IEEM, pp. 1944-1948, Hong Kong, China, Dec. 2012 (doi: 10.1109/IEEM.2012.6838085).
[7] M Bazrafshan, N Gatsis, "Comprehensive modeling of three-phase distribution systems via the bus admittance matrix", IEEE Trans. on Power Systems, vol. 33, no. 2, pp. 2015-2029, March. 2018 (doi: 10.1109/TPWRS.2017.2728618).
[8] X. Zhou, Z. Liu, Y. Guo, C. Zhao, J. Huang, L. Chen, "Gradient-based multi-area distribution system state estimation", IEEE Trans. on Smart Grid, Early Access 2020 (doi: 10.1109/TSG.2020.3003897).
[9] E. Jalalabadi, A. Rahimi-Kian, ''Real-time risk and cost management of a grid connected micro-grid'', Proceeding of the IEEE/CIRED, pp. 10-13, Stockholm, Sweden, June 2013 (doi: 10.1049/cp.2013.0544).
[10] M. Hormozi, B. Bahmani-Firoozi, T. Niknam, “Bi-level energy management optimization in multi-area smart grids”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 29-40, Summer 2020 (in Persian).
[11] H. S. Solari, B. Majidi, M. Moazzami, “Optimal estimation of Weibull distribution parameters in order to provide preventive-corrective maintenance program for power transformers”, vol. 15, no. 4, pp. 536-544, Dec. 2019.
[12] F. Campelo, L. Batista, R. Takahashi, H. Diniz, E. Carrano,"Multicriteria transformer asset management with maintenance and planning perspectives'', IET Generation, Transmission and Distribution, vol. 10, no. 9, pp. 2087-2097, June 2016 (doi: 10.1049/iet-gtd.2015.1112).
[13] M. Mahdavian, N. Behzadfar, “A review of wind energy conversion system and application of various induction generators”, Journal of Novel Researches on Electrical Power, vol. 8, no. 4, pp. 55-66, Winter 2020 (in Persian).
[14] J. Zhong, W. Li, C. Wang, J. Yu, R. Xu, "Determining optimal inspection intervals in maintenance considering equipment aging failures", IEEE Trans. on Power System, vol. 32, no. 2, pp. 1474 – 1482, March 2017, (doi: 10.1109/TPWRS.2016.2580508).
[15] B. Yang, ''Reliability of parallel connected power transformers with failure correlation and its preventive maintenance'', Proceeding of the IEEE/ICEMS), Hangzhou, China, Oct. 2014 (doi: 10.1109/ICEMS.2014.7013623).
[16] A. Sklar, ''Function’s de repartition a dimensions et leurs marges'', Publications de l’Institut de Statistique de L’Université de Paris, vol. 8, pp. 229-231, 1959.
[17] J. Aghaei, N. Amjady, A. Baharvandi, M. Akbari, ''Generation and transmission expansion planning: MILP–based probabilistic model'', IEEE Trans. on Power System, vol. 29, no. 4, pp. 1592 – 1601, July 2014, (doi: 10.1109/TPWRS.2013.2296352).
[18] B. Taheri, S. Hosseini, H. Askarian-Abyaneh, F. Razavi, “A new inrush current detection method based on current Lissajous figure”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 40, pp. 43-54, Winter 2020 (in Persian).