بررسی تاثیر ضخامت و فشار در دیافراگم های میکرو الکترو مکانیکی در میزان جابجائی در کاربردهای پزشکی
محورهای موضوعی : انرژی های تجدیدپذیر
1 - مربی، واحد ایلخچی، دانشگاه آزاد اسلامی، باشگاه پژوهشگران جوان و نخبگان، ایلخچی، ایران.
کلید واژه: سیستم میکروالکترومکانیکی (MEMS), دیافراگم, جابجائی, ماده پیزوالکتریک, COMSOL,
چکیده مقاله :
در این مقاله، تاثیر پارامترهای طراحی در دیافراگم بر روی حساسیت میکروفن به منظور استفاده در کاربردهای پزشکی قابل کاشت ارائه گردیده است. پارامترهای متفاوتی از دیافراگم همچون شکل، ابعاد، ضخامت و فشارهای اعمالی مختلف بر روی دیافراگم در نظر گرفته شدهاست. تاثیر تغییرات در این پارامترها بر روی میزان جابجائی و استرس در انواع شکل دیافراگم ها مورد بحث و بررسی واقع شده است. به منظور طراحی بهینه، انواع شکل دیافراگم های پیشنهادی، از جهت پارامترهای در نظر گرفته شده در نرم افزار COMSOL شبیه سازی و آنالیز شده اند. با توجه به پارامترهای مورد بررسی، انواع اشکال دیافراگم مربعی، مستطیلی و بیضوی شکل با توجه به شرایط در نظر گرفته شده، دارای میانگین جابجائی مرکزی در محدوده فرکانس شنوائی انسان 20Hz-20KHz به ترتیب nm2. 6 ، nm 5. 5 و nm 130می باشد. نتایج حاصل از شبیه سازی ها بدین صورت می باشد که دیافراگم بیضوی شکل نسبت به اشکال دیگر مورد بررسی در این مقاله، برای کاربردهای پزشکی و امکان کاشته شدن، دارای کارائی بهینه و مطلوبی می باشد. به علاوه، ماده ی پیزوالکتریک مورد استفاده در طراحی دیافراگم PZT است.
In this paper, the influence of design parameters on the sensitive microphone diaphragm for use in implantable medical applications is presented.The different parameters such as diaphragm shape, size, thickness and different applied pressures on the diaphragm has been considered. The effect of changes in these parameters on the displacement and stress in a variety of shapes of diaphragm is discussed. In order to design the optimal shape of the proposed diaphragm for the considered parameters, it has been simulated and analyzed in software COMSOL.According to the parameters, the diaphragm shapes of square, rectangular and oval with respect to the intended user, average central displacement in human hearing frequency range 20Hz-20KHz are nm 5. 5, nm2. 6, and nm 130 respectively .According to the results of the simulations, the oval-shaped diaphragm that has been studies in this paper, the possibility of implanted medical applications, performance is optimal than other shapes. In addition, the piezoelectric material is PZT which used in the design of the diaphragm.
[1] R.J. Littrell, “High performance piezoelectric MEMS microphones”, Ph.D. dissertation, The University of Michigan, 2010.
[2] D.R. Dixon, “Mems microphones break design mould”, April 2006.
[3] J. Bouchaud, “Mems microphones make noise”, Jan. 2012.
[4] I.J. Cho, S. Jang, H.J. Nam, “A piezoelectrically actuated mems speaker with polyimide membrane and thin film pb(zr,ti)o3(pzt) actuator”, Integrated Ferroelectrics, Vol. 105, No. 1, pp. 27–36, 2009.
[5] M.C. Cheng, W.S. Huang, S.R.S. Huang, “A silicon microspeaker for hearing instruments”, Journal of Micromechanics and Microengineering, Vol. 14, No. 7, pp. 859-866, May 2004.
[6] H. Kim, A. Astle, K. Najafi, L. Bernal, P. Washabaugh, F. Cheng, “Bi-directional electrostatic microspeaker with two large-deflection flexible membranes actuated by single/dual electrodes”, Proceeding of the IEEE/ICSENS, pp. 89-92, Irvine, CA, USA, Nov. 2005.
[7] H. J. Kim, K. Koo, S.Q. Lee, K.H. Park, J. Kim, “High performance piezoelectric microspeakers and thin speaker array system”, ETRI Journal, Vol. 31, No. 6, pp. 680–687, Dec. 2009.
[8] G. Lemarquand, R. Ravaud, I. Shahosseini, V. Lemarquand, J. Moulin, E. Lefeuvre, “Memselectrodynamic loudspeakers for mobile phones”, Applied Acoustics, Vol. 73, No. 4, pp. 379 -385, April 2012.
[9] Y.J. Chang, Y.W. Chung, T.A. Chou, M.F. Huang, “Valve-less diaphragm micropump with electromagnetic actuation”, Advanced Materials Research, Vol. 647, pp. 929–934, Jan. 2013.
[10] S.S. Je, F. Rivas, R.E. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, S. Kiaei, J. Chae, “A compact and low-cost MEMS loudspeaker for digital hearing aids”, IEEE Trans. on Biomedical Circuits and Systems, Vol. 3, No. 5, pp. 348-358, Oct. 2009.
[11] S. Kim, X. Zhang, R. Daugherty, E. Lee, G. Kunnen, D. Allee, E. Forsythe, J. Chae, “Microelectromechanical systems (mems) based-ultrasonic electrostatic actuators on a flexible substrate”, IEEE Electron Device Letters, Vol. 33, No. 7, pp. 1072 –1074, July 2012.
[12] P. Rangsten, L. Smith, L. Rosengren, B. Hok. “Electrostatically excited diaphragm driven as a loudspeaker”, Sensors and Actuators A: Physical, Vol. 52, pp. 211–215, 1996.
[13] P. Scheeper, A.D. Van der, W. Olthuis, P. Bergveld, “A review of silicon microphones”, Sensors and Actuators A: Physical, Vol. 44, No. 1, pp. 1–11, 1994.
[14] W.S. Lee, S.S. Lee, “Piezoelectric microphone built on circular diaphragm”, Sensors and Actuators A: Physical, Vol. 144, No. 2, pp. 367-373, June 2008.
[15] H. Bruhns, A. Marianovich, M. Wolff, “Photoacoustic spectroscopy using a MEMS microphone with inter-IC sound digital output”, International Journal of Thermophysics, Vol. 35, No. 12, pp. 2292–2301, Dec. 2014.
[16] C. Han, E. Kim, “Fabrication of dome-shaped diaphragm with circular clamped boundary on silicon substrate”, in Proc. IEEE Conference MEMS, pp. 505–510, Jan. 1999.
[17] S.H. Yi, E.S. Kim, “Piezoelectric Micro-speaker with Compressive Nitride Diaphragm”, IEEE International Micro Electro Mechanical Systems Conference, pp. 260-263, Jan. 2002.
[18] M. Niu, E.S. Kim, “Piezoelectric bimorph microphone built onmicromachinedparylene diaphragm”, Journal of Microelectromechanical Systems, Vol. 12, No. 6, pp. 892-898, Dec. 2003.
[19] S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi, S.R. Kim, “Micromachined piezoelectricmembrane acoustic device”, Sensors and Actuators A: Physical, Vol. 103, No. 1-2, pp. 130–134, Jan. 2003.
[20] J.W. Judy, “Microelectromechanical systems (MEMS): fabrication, design and applications”, Smart Materials and Structures,Vol. 10, No. 6, pp. 1115–1134, Nov. 2001.
[21] D.T. Blackstock, “Fundamentals of physical acoustics”, California: John Wiley & Sons, Inc, Ch. 4, 14, 2000.
[22] N. Zargarpour, M.H. Zarifi, “A piezoelectric micro-electromechanical microphone for implantable hearing aid applications”, Berlin Heidelberg, Vol. 21, No. 4, pp. 893-902, April 2014.
[23] S.N. Laboratories, A. Sandia, “MEMS advanced design short course notes”, National Laboratories, NM, pp. 5-21, July 2002.
[24] J.J. Sneigowski, M.S. Rodgers, “Multi-layer enhancement to polysilicon surface micromachining technology”, International Electron Devices Meeting, pp. 903-906, Dec. 1997.
[25] S. Timoshenko, S.W. Krieger, “Theory of plates and shells”, McGraw-Hill, New York, pp. 396–404, 1959.
[26] N. Zargarpour, M. Zarifi, “Proposing a new design for microelectromechanical microphone’s diaphragm in implantable hearing aid”, Proceeding of the National Conf. on Computer and Intelligent Systems. Iran-Tabriz, 2013.
[27] P. DahaleKetaki, M. RasalSuyog, “An aid hearing for stone deaf person”, International Journal of Engineering Science and Technology (IJEST), Vol. 4, No. 4, pp. 1544-1552, 2012.
[28] T.Y. Cheng, “The sensitivity analysis of a MEMS microphone with different membrane diameters”, Journal of Marine Science and Technology, Vol. 18, No. 6, pp. 790-796 , Dec. 2010.
_||_