سیستمهای مقطعنگاری القای مغناطیسی، مروری بر سیستمهای صنعتی و بالینی ساخته شده
محورهای موضوعی : انرژی های تجدیدپذیر
1 - مرکز تحقیقاتی ریزشبکههای هوشمند، دانشگاه آزاد اسلامی، واحد نجفآباد؛ استادیار، دانشگاه آزاد اسلامی، واحد نجفآباد، ایران
کلید واژه: مقطعنگاری القای مغناطیسی, تصویربرداری القای مغناطیسی, مقطع نگاری لولههای نفت و گاز, تصویر برداری غیر مخرب لولههای نفت و گاز و پتروشیمی,
چکیده مقاله :
مقطعنگاری القای مغناطیسی یک روش تصویربرداری غیرهجومی و غیرتداخلی از داخل یک جسم هدف، بر اساس انجام اندازهگیری از روی سطح خارجی جسم و بدون تماس الکتریکی با آن است. در این روش با عبور یک جریان متناوب از یک یا چند سیمپیچ تحریک، یک میدان مغناطیسی تحریک در درون جسم مورد نظر ایجاد شده و ولتاژهای القایی در سیم پیچهای گیرنده اندازهگیری میشوند. بازسازی تصویر جسم با استفاده از نتایج حاصل از اندازهگیری، تخمین اولیهای از ضرایب هدایت الکتریکی نواحی داخلی جسم، حل مسائل پیشرو و معکوس صورت میگیرد. از مقطعنگاری القای مغناطیسی در کاربردهای بالینی، می توان برای تصویربرداری از بافتهای مختلف بدن استفاده کرد. مزایای این روش نسبت به سایر روشهای مقطعنگاری الکتریکی در کاربردهای بالینی، بینیازی آن از الکترودهای تماسی و بالاتربودن سطح ایمنی الکتریکی آن هستند. در سوی دیگر، یکی از نیازهای متخصصین صنعت کسب اطلاع از وضعیت داخلی لولهها، مخزنها و حفرههای حاوی نفت، گاز و مشتقات آنها است که به طور معمول دسترسی به داخل آنها بدون قطع فرآیند تولید ممکن نیست. استفاده از مقطع نگاری القای مغناطیسی به عنوان یک روش تصویربرداری غیر مخرب از داخل خطوط لولههای انتقال نفت و گاز برای پایش مواد تشکیل دهنده سیالها و اندازه گیری جریان و دبی سیالها نیز در طی سالهای اخیر از اهمیت خاصی برخوردار شده و در حال گسترش است. در این مقاله ضمن معرفی مختصر سیستمهای ساخته شده مقطعنگاری القای مغناطیسی، مشخصات سیستمهای ساخته شده در دو دسته کاربرد صنعتی و بالینی استخراج و مورد بحث و بررسی قرار خواهد گرفت.
Being a non-contact safe imaging technique, MIT has been an appropriate method for non-invasive and non-destructive industrial and medical imaging. In this imaging method, a primary magnetic field is applied by one or more excitation coils to induce eddy currents in the material to be studied, and then the secondary magnetic field from these eddy currents is detected in sensing coils. Image reconstruction is obtained from estimated electric conductivity coefficients by using measurement data and solutions of forward and inverse problems. MIT is a promising modality for noninvasive medical imaging due to its contactless and nonionizing technology. On the other hand, one of the needs of experts in oil/gas industry is to get information about process inside pipelines and tanks containing oil and gas, which is usually not accessible without disconnecting the process. For this reason, tremendous efforts have been made on measurements and nondestructive tests without physical disconnecting the process. In recent years, applications of process tomography as an imaging non-invasive tool for imaging from inside of pipelines, monitoring and measuring flows have increased. In this Paper, the properties of process and medical tomography systems reviewed.
[1] R. Williams, M. Beck, Process tomography: Principles, techniques, and applications, Butterworth Heinemann Ltd, Oxford, Britain, 1995.
[2] M.R. Yousefi, M. Hadinia, R. Jafari, H. Abrishami Moghadam, H.R. Taghirad, " Applications of electrical and optical tomography in oil/gas industry", Proceedings of the SIOEI, Tehran, Iran, Feb. 2012 (in Persian).
[3] M.R. Yousefi, R. Jafari, H. Abrishami-Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in electrical impedance tomography", Proceedings of the IEEE/MeMeA, pp. 251-254, Budapest, Hungary, May 2012.
[4] M.R. Yousefi, R. Jafari, H. Abrishami-Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in electrical impedance tomography", IEEE Trans. on Instrumentation and Measurement, Vol. 62, pp. 2629-2638, Oct. 2013.
[5] M. R. Yousefi, R. Jafari, H. Abrishami Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in magnetic inductance tomography", Proceedings of ICBME, 6 papers, Tehran, Iran, Dec. 2013 (in Persian).
[6] M. R. Yousefi, R. Jafari, H. Abrishami Moghaddam, "A combined wavelet based mesh free-finite element method for solving the forward problem in magnetic induction tomogramphy", Iranian Journal of Biomedical Engineering, Vol. 8, pp. 69-86, May 2014 (in Persian).
[7] S. Watson, R. J. Williams, H. Griffiths, W. Gough, A. Morris, "Magnetic induction tomography: phase versus vector voltmeter measurement techniques", Physiological Measurement, Vol. 24, pp. 555–564, April 2003.
[8] H. Scharfetter, A. Kostinger, S. Issa, "Hardware for quasi-single-shot multifrequency magnetic induction tomography (MIT): the Graz MK2 system", Physiological Measurement, Vol. 29, pp. 431–443, June 2008.
[9] H. Y. Wei, A. J. Wilkinson, "Design of a sensor coil and measurement electronics for magnetic induction tomography", IEEE Trans. on Instrumentation and Measurement, Vol. 60, pp. 3853–3859, Dec. 2011.
[10] X. Ma, A. J. Peyton, S. R. Higson, A. Lyons, S. J. Dickinson, "Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications", Measurement Science and Technology, Vol. 17, pp. 111–118, Dec. 2005.
[11] Z. Xu, H. Luo, W. He, C. He, X. Song, Z. Zahng, "A multi-channel magnetic induction tomography measurement system for human brain model imaging", Physiological Measurement, Vol. 30, pp. 175–186, Jun. 2009.
[12] A. Trakic, N. Eskandarnia, B. K. Li, E. Weber, H.Wang, S. Crozier, "Rotational magnetic induction tomography", Measurement Science and Technology, Vol. 23, 025402 (12pp), Jan. 2012.
[13] H. Griffiths, "Magnetic induction tomography", Measurement Science and Technology, Vol. 12, pp. 1126-1131 , Dec. 2001.
[14] J. M. Scaife, R. C. Tozer, I. L. Freeston, "Conductivity and permittivity images from an induced current electrical impedance tomography system", IEE Proceedings - Science, Measurement and Technology, Vol. 141, pp. 356-362, Sep. 1994.
[15] A. Ambia, T. Takemae, Y. Kosugi, M. Hongo., "Electrical impedance imaging using eddy current", International Journal of Biological and Medical Sciences, Vol. 4, pp. 182-185, Aug. 2009.
[16] B. Horner, F. Mesch, "An induction flowmeter insensitive to asymmetric flow profiles", Proceedings of the ECAPT Conf., pp. 321-330 , Norway, April 1995.
[17] S. Honda, Y. Tomita, "Estimation of velocity profile by magnetic flowmeter with rotating field", Proceedings of the FLUCOME, pp. 1301-1304, New York, USA, Aug. 1991.
[18] S Levy, D. Adam, Y. Bresler, "Electromagnetic impedance tomography (EMIT): A new method for impedance imaging", IEEE Trans. on Medical Imaging, Vol. 21, pp. 676-687, Jun. 2002.
[19] J. G. Webster, Electrical impedance tomography, Adam Hilger imprint by IOP publishing, Bristol and New York, 1990.
[20] B. Brown, "Medical impedance tomography and process impedance tomography: a brief review", Measurement Science and Technology, Vol. 12, pp. 991-996, Dec. 2001.
[21] R. Merwa, K. Hollaus, H. Scharfetter, "Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability", Physiological Measurement, Vol. 25, pp. 1–8, Oct. 2004.
[22] Y. Chen, M. Yan, D. Chen, M. Hamsch, H. Liu, H. Jin, M. Vauhkonen, C. H. Igney, J. Kahlert, Y. Wang, "Imaging hemorrhagic stroke with magnetic induction tomography: realistic simulation and evaluation", Physiological Measurement, Vol. 31, pp. 809–827, Oct. 2010.
[23] M. Zolgharni, P. D. Ledger, H. Griffiths, "Forward modelling of magnetic induction tomography: a sensitivity study for detecting haemorrhagic cerebral stroke", Medical and Biological Engineering and Computing, Vol. 47, pp. 1301–1313, Jan. 2009.
[24] B. Dekdouk, C. Ktistis, W. Yin, D. W. Armitage, A. J. Peyton, "The application of a priori structural information based regularization in image reconstruction in magnetic induction tomography", Journal of Physics: Conference Series, Vol. 224 , 012048 (4pp.), April 2010.
[25] B. Dekdouk, C. Ktistis, D. W. Armitage, A. J. Peyton, "Assessing the feasibility of detecting a hemorrhagic type stroke using a 16 channel magnetic induction system", Journal of Physics: Conference Series, Vol. 224, 012047 (4pp.), April 2010.
[26] M. Zolgharni, P. D. Ledger, D. W. Armitage, D. S. Holder, H. Griffiths, "Imaging cerebral haemorrhage with magnetic induction tomography: numerical modeling", Physiological Measurement, Vol. 30, pp. 187–200, Jun. 2009.
[27] S. Sapetsky, V. Cherepenin, A. Korjenevsky, V. Kornienko, A. Vartanov, "Development of the system for visualization of electric conductivity distribution in human brain and its activity by the magnetic induction tomography (MIT) method", Journal of Physics: Conference Series, Vol. 224, 012038 (4pp.), April 2010.
[28] A. K. Babushkina, A. S. Bugaeva, A. V. Vartanovb, A. V. Korzhenevskiia, S. A. Sapetskiia, T. S. Tuikina, V. A. Cherepenina, "Developing methods and instruments of electromagnetic tomography for studying the human brain and cognitive functions", Bulletin Russian Academy Science, Vol. 75, pp. 136-139, Jun. 2011.
[29] D. Gursoy, H. Scharfetter, "Feasibility of lung imaging using magnetic induction tomography", Proceedings of World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, Vol. 252, pp. 525-528, Sep. 2009.
[30] D. Gursoy, H. Scharfetter, "Anisotropic conductivity tensor imaging using magnetic induction tomography", Physiological Measurement, Vol. 31, pp. 135–145, Oct. 2010.
[31] A. Tamburrino, S. Ventre, G. Rubinacci, "Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime", Inverse Problems, Vol. 26, No. 7, pp. 1-21, July 2010.
[32] T. Dyakowski, "Process tomography applied to multi-phase flow measurement", Measurement Science and Technology, Vol. 7, pp. 343-353, Mar. 1996.
[33] M. Soleimani, W. R. B. Lionheart, A. J. Peyton, "Image reconstruction for high-contrast conductivity imaging in mutual induction tomography for industrial applications", IEEE Trans. on Instrumentation and Measurement, Vol. 56, pp. 2024-2032, Oct. 2007.
[34] R. Loser, T. Wajman, D. Mewes, "Electrical capacitance tomography: image reconstruction along electrical field lines", Measurement Science and Technology, Vol. 12, pp. 1083-1091, Dec. 2001.
[35] G. Steiner, "Application and data fusion of different sensor modalities in tomographic imaging", Elektrotechnik and Informationstechnik, Vol 124, pp. 232-239, Aug. 2007.
[36] M. Soleimani, "Image and shape reconstruction methods in magnetic induction and electrical impedance tomography", PhD thesis, Faculty of Engineering and Physical Sciences, University of Manchester, 2005.
[37] M. Wang, "Electrode models in electrical impedance tomography", Journal of Zhejiang University-SCIENCE A, Vol. 6, pp. 1386-1393, Dec. 2005.
[38] S. Y. Semenov, J. Kellam, P. Althausen, T. Williams, A. Abubakar, A. Bulyshev, Y. Sizov, "Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment", Physics Medicine Biology, Vol. 52, pp. 5705–5719, Sep. 2007.
[39] J. K. Seo, O. Kwon, E. J. Woo, "Magnetic resonance electrical impedance tomography (MREIT): Conductivity and current density imaging", Journal of Physics: Conference Series, Vol. 12, pp. 140-155, Jun. 2005.
[40] M. R. Yousefi, "A combined mesh free-finite element method for solving the forward problem in magnetic induction tomography and designing a laboratory prototype", PhD Thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2014 (in Persian).
[41] H. Griffiths, "Magnetic induction tomography", Measurement Science and Technology, Vol. 12, pp. 1126-1131, Dec. 2001.
[42] A. J. Peyton, Z. Z. Yuy, G. Lyony, S. Al-Zeibaky, J. Ferreiraz, J. Velezz, F. Linharesz, A. R. Borgesz, H. L. Xiongx, N. H. Saundersk, M. S. Becky., "An overview of electromagnetic inductance tomography: Description of three different systems", Measurement Science and Technology, Vol. 7, pp. 261-271, Mar. 1996.
[43] H.-Y. Wei, M. Soleimani, "A magnetic induction tomography system for prospective industrial processing applications", Chinese Journal of Chemical Engineering, Vol. 20, pp. 406-410, April 2012.
[44] M. Zhang, L. Ma, M. Soleimani, "Magnetic induction tomography guided electrical capacitance tomography imaging with grounded conductors", Measurement, Vol. 53, pp. 171-181, Jul. 2014.
[45] L. Ma, A. Hunt, M. Soleimani, "Experimental evaluation of conductive flow imaging using magnetic induction tomography", International Journal of Multiphase Flow, Vol. 72, pp. 198-209, Jun. 2015.
[46] H. Scharfetter, H. K. Lackner, J. Rosell, "Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues", Physiological Measurement, Vol. 22, pp. 131–146, Feb. 2001.
[47] H. Scharfetter A. Kostinger, S. Issa, "Spectroscopic 16 channel magnetic induction tomography: the new Graz MIT system", Proceedings of the IFMBE, pp. 452–455, Berlin, Heidelberg, Sep. 2007.
[48] S. Watson, R. J. Williams, W. Gough, H. Griffiths, "A magnetic induction tomography system for samples with conductivities below 10 S m−1", Measurement Science and Technology, Vol. 19, 045501 (11pp.), April 2008.
[49] C. H. Igney, S. Watson, R. J. Williams, H. Griffiths, O. Dossel, "Design and performance of a planar-array MIT system with normal sensor alignment", Physiological Measurement, Vol. 26, pp. 263–278, April 2005.
[50] G.S. Park, S. Kang, "A study on the determination of the object shape in magnetic inductance tomography system", Proceedings of the IEEE/CEFC, pp. 77-77, Miami, FL, USA, May 2006.
[51] G. S. Park, "Development of a magnetic inductance tomography system", IEEE Trans. on Magnetics, Vol. 41, pp. 1932-1935, May. 2005.
[52] M. Soleimani, C. Ktistis, X. Ma, W. Yin, W. R. B Lionheart, A. J. Peyton, "Magnetic induction tomography: image reconstruction on experimental data from various applications", Proceedings of 6th Conference on Biomedical Applications of Electrical Impedance Tomography, London, UK, 34955 (4pp.), Jun. 2005.
[53] Z. Xu, H. Luo, W. He, C. He, X. Song, Z. Zahng, "A multi-channel magnetic induction tomography measurement system for human brain model imaging", Physiological Measurement, Vol. 30, pp. 175–186, Jun. 2009.
[54] J. Caeiros, B. Gil, N. B. Br´as, R. C. Martins, "A differential high-resolution motorized multi-projection approach for an experimental Magnetic Induction Tomography prototype", Proceedings of the IEEE/MeMeA, pp. 12836711, Budapest, Hungary, May 2012.
[55] J. R. Feldkamp, "Single-coil magnetic induction tomographic three-dimensional imaging." Journal of Medical Imaging, Vol. 2, pp. 013502, Jan. 2015.
[56] C. Deans, L. Marmugi, S. Hussain, F. Renzoni, "Electromagnetic induction imaging with a radio-frequency atomic magnetometer", Applied Physics Letters, Vol. 108, pp. 103503, Mar. 2016.
[57] M. Luca, F. Renzoni, "Optical magnetic induction tomography of the heart."Scientific reports, Vol. 6, pp. 23962, April 2016.
[58] S. R. Seidnezhad, "Electrical current tomography", MS thesis, Electrical Engineering Department, Sharif University of Technology, 1992 (in Persian).
[59] M. Soleymani, "Design and implementation of a tomography system", MS thesis, Electrical Engineering Department, Sharif University of Technology, 2000 (in Persian).
[60] A. Nateghi, "Electrical impedance tomography using APT method", MS thesis, Mechanical Engineering Department, Sharif University of Technology, 2001 (in Persian).
[61] S. R. Molaei, "Study, Analysis, and Modeling of Bioelectrodes for an Electrical Impedance Tomography System", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2008 (in Persian).
[62] N. Dayarian, "Finite element modeling and implementation of an electrical impedance tomography system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2008 (in Persian).
[63] S. A. Hamidi, "Design and implementation of a digital phase-sensitive demodulator for use in electrical tomography systems", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2009 (in Persian).
[64] A. Nasori, "Improve and determination of resolution in an electrical impedance tomography system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2010 (in Persian).
[65] M. R. Yousefi, A. Mohammadi, R. Jafari, "Improving the Voltage Measuring in Electrical Impedance Tomography Based on Phase-Sensitive Demodulator", Proceedings of ICBEM, 6 papers, Tehran, Iran, Dec. 2013 (in Persian).
[66] K. Dor, "Design and implementation of electrical capacitance tomography (ECT) system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2009 (in Persian).
[67] H. Scharfetter, K. Hollaus, J. Rosell-Ferrer, R. Merwa, "Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio", Annals of Biomedical Engineering, Vol. 34, pp. 1786–98, Nov. 2006.
[68] A. Korjenevsky, V. Cherepenin, S. Sapetsky, "Magnetic induction tomography: Experimental realization", Physiological Measurement, Vol. 21, pp. 89–94, Feb. 2000.
[69] X. Ma, S. R. Higson, A. Lyons, A. J. Peyton, "Development of a fast electromagnetic induction tomography system for metal process applications", Proceedings of WCIPT, pp. 196–201, Aizu, Japan, Sep. 2005.
[70] H. Scharfetter, R. Merwa, K. Pilz, "A new type of gradiometer for the receiving circuit of magnetic induction tomography", Physiological Measurement, Vol. 26, pp. S307–S318, April 2005.
[71] Z. Zakaria, R. A Rahim, M. S. B. Mansor, S. Yaacob, N. M. N. Ayob, S. Z. M. Muji, M. H. F. Rahiman, S. M. K. S. Aman, "Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography", Sensors, Vol 12, pp. 7126-7156, May. 2012.
[72] R. Cantor, A. Hall, A. Matlachov, "Thin-film planar gradiometer with long baseline", Journal of Physics: Conference Series, Vol. 43, pp. 1223–1226, Sep. 2006.
[73] C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, O. Dössel, "Planar system for magnetic induction conductivity measurement using a sensor matrix", Physiological Measurement, Vol. 25, pp. 403–411, Oct. 2004.
K. Stawicki, S. Gratkowski, M. Komorowski, T. Pietrusewicz, "A new transducer for magnetic induction tomography", IEEE Trans. on Magnetics, Vol. 45, pp. 1832–1835, Oct. 2009.
_||_[1] R. Williams, M. Beck, Process tomography: Principles, techniques, and applications, Butterworth Heinemann Ltd, Oxford, Britain, 1995.
[2] M.R. Yousefi, M. Hadinia, R. Jafari, H. Abrishami Moghadam, H.R. Taghirad, " Applications of electrical and optical tomography in oil/gas industry", Proceedings of the SIOEI, Tehran, Iran, Feb. 2012 (in Persian).
[3] M.R. Yousefi, R. Jafari, H. Abrishami-Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in electrical impedance tomography", Proceedings of the IEEE/MeMeA, pp. 251-254, Budapest, Hungary, May 2012.
[4] M.R. Yousefi, R. Jafari, H. Abrishami-Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in electrical impedance tomography", IEEE Trans. on Instrumentation and Measurement, Vol. 62, pp. 2629-2638, Oct. 2013.
[5] M. R. Yousefi, R. Jafari, H. Abrishami Moghaddam, "A combined wavelet based mesh free method for solving the forward problem in magnetic inductance tomography", Proceedings of ICBME, 6 papers, Tehran, Iran, Dec. 2013 (in Persian).
[6] M. R. Yousefi, R. Jafari, H. Abrishami Moghaddam, "A combined wavelet based mesh free-finite element method for solving the forward problem in magnetic induction tomogramphy", Iranian Journal of Biomedical Engineering, Vol. 8, pp. 69-86, May 2014 (in Persian).
[7] S. Watson, R. J. Williams, H. Griffiths, W. Gough, A. Morris, "Magnetic induction tomography: phase versus vector voltmeter measurement techniques", Physiological Measurement, Vol. 24, pp. 555–564, April 2003.
[8] H. Scharfetter, A. Kostinger, S. Issa, "Hardware for quasi-single-shot multifrequency magnetic induction tomography (MIT): the Graz MK2 system", Physiological Measurement, Vol. 29, pp. 431–443, June 2008.
[9] H. Y. Wei, A. J. Wilkinson, "Design of a sensor coil and measurement electronics for magnetic induction tomography", IEEE Trans. on Instrumentation and Measurement, Vol. 60, pp. 3853–3859, Dec. 2011.
[10] X. Ma, A. J. Peyton, S. R. Higson, A. Lyons, S. J. Dickinson, "Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications", Measurement Science and Technology, Vol. 17, pp. 111–118, Dec. 2005.
[11] Z. Xu, H. Luo, W. He, C. He, X. Song, Z. Zahng, "A multi-channel magnetic induction tomography measurement system for human brain model imaging", Physiological Measurement, Vol. 30, pp. 175–186, Jun. 2009.
[12] A. Trakic, N. Eskandarnia, B. K. Li, E. Weber, H.Wang, S. Crozier, "Rotational magnetic induction tomography", Measurement Science and Technology, Vol. 23, 025402 (12pp), Jan. 2012.
[13] H. Griffiths, "Magnetic induction tomography", Measurement Science and Technology, Vol. 12, pp. 1126-1131 , Dec. 2001.
[14] J. M. Scaife, R. C. Tozer, I. L. Freeston, "Conductivity and permittivity images from an induced current electrical impedance tomography system", IEE Proceedings - Science, Measurement and Technology, Vol. 141, pp. 356-362, Sep. 1994.
[15] A. Ambia, T. Takemae, Y. Kosugi, M. Hongo., "Electrical impedance imaging using eddy current", International Journal of Biological and Medical Sciences, Vol. 4, pp. 182-185, Aug. 2009.
[16] B. Horner, F. Mesch, "An induction flowmeter insensitive to asymmetric flow profiles", Proceedings of the ECAPT Conf., pp. 321-330 , Norway, April 1995.
[17] S. Honda, Y. Tomita, "Estimation of velocity profile by magnetic flowmeter with rotating field", Proceedings of the FLUCOME, pp. 1301-1304, New York, USA, Aug. 1991.
[18] S Levy, D. Adam, Y. Bresler, "Electromagnetic impedance tomography (EMIT): A new method for impedance imaging", IEEE Trans. on Medical Imaging, Vol. 21, pp. 676-687, Jun. 2002.
[19] J. G. Webster, Electrical impedance tomography, Adam Hilger imprint by IOP publishing, Bristol and New York, 1990.
[20] B. Brown, "Medical impedance tomography and process impedance tomography: a brief review", Measurement Science and Technology, Vol. 12, pp. 991-996, Dec. 2001.
[21] R. Merwa, K. Hollaus, H. Scharfetter, "Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability", Physiological Measurement, Vol. 25, pp. 1–8, Oct. 2004.
[22] Y. Chen, M. Yan, D. Chen, M. Hamsch, H. Liu, H. Jin, M. Vauhkonen, C. H. Igney, J. Kahlert, Y. Wang, "Imaging hemorrhagic stroke with magnetic induction tomography: realistic simulation and evaluation", Physiological Measurement, Vol. 31, pp. 809–827, Oct. 2010.
[23] M. Zolgharni, P. D. Ledger, H. Griffiths, "Forward modelling of magnetic induction tomography: a sensitivity study for detecting haemorrhagic cerebral stroke", Medical and Biological Engineering and Computing, Vol. 47, pp. 1301–1313, Jan. 2009.
[24] B. Dekdouk, C. Ktistis, W. Yin, D. W. Armitage, A. J. Peyton, "The application of a priori structural information based regularization in image reconstruction in magnetic induction tomography", Journal of Physics: Conference Series, Vol. 224 , 012048 (4pp.), April 2010.
[25] B. Dekdouk, C. Ktistis, D. W. Armitage, A. J. Peyton, "Assessing the feasibility of detecting a hemorrhagic type stroke using a 16 channel magnetic induction system", Journal of Physics: Conference Series, Vol. 224, 012047 (4pp.), April 2010.
[26] M. Zolgharni, P. D. Ledger, D. W. Armitage, D. S. Holder, H. Griffiths, "Imaging cerebral haemorrhage with magnetic induction tomography: numerical modeling", Physiological Measurement, Vol. 30, pp. 187–200, Jun. 2009.
[27] S. Sapetsky, V. Cherepenin, A. Korjenevsky, V. Kornienko, A. Vartanov, "Development of the system for visualization of electric conductivity distribution in human brain and its activity by the magnetic induction tomography (MIT) method", Journal of Physics: Conference Series, Vol. 224, 012038 (4pp.), April 2010.
[28] A. K. Babushkina, A. S. Bugaeva, A. V. Vartanovb, A. V. Korzhenevskiia, S. A. Sapetskiia, T. S. Tuikina, V. A. Cherepenina, "Developing methods and instruments of electromagnetic tomography for studying the human brain and cognitive functions", Bulletin Russian Academy Science, Vol. 75, pp. 136-139, Jun. 2011.
[29] D. Gursoy, H. Scharfetter, "Feasibility of lung imaging using magnetic induction tomography", Proceedings of World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, Vol. 252, pp. 525-528, Sep. 2009.
[30] D. Gursoy, H. Scharfetter, "Anisotropic conductivity tensor imaging using magnetic induction tomography", Physiological Measurement, Vol. 31, pp. 135–145, Oct. 2010.
[31] A. Tamburrino, S. Ventre, G. Rubinacci, "Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime", Inverse Problems, Vol. 26, No. 7, pp. 1-21, July 2010.
[32] T. Dyakowski, "Process tomography applied to multi-phase flow measurement", Measurement Science and Technology, Vol. 7, pp. 343-353, Mar. 1996.
[33] M. Soleimani, W. R. B. Lionheart, A. J. Peyton, "Image reconstruction for high-contrast conductivity imaging in mutual induction tomography for industrial applications", IEEE Trans. on Instrumentation and Measurement, Vol. 56, pp. 2024-2032, Oct. 2007.
[34] R. Loser, T. Wajman, D. Mewes, "Electrical capacitance tomography: image reconstruction along electrical field lines", Measurement Science and Technology, Vol. 12, pp. 1083-1091, Dec. 2001.
[35] G. Steiner, "Application and data fusion of different sensor modalities in tomographic imaging", Elektrotechnik and Informationstechnik, Vol 124, pp. 232-239, Aug. 2007.
[36] M. Soleimani, "Image and shape reconstruction methods in magnetic induction and electrical impedance tomography", PhD thesis, Faculty of Engineering and Physical Sciences, University of Manchester, 2005.
[37] M. Wang, "Electrode models in electrical impedance tomography", Journal of Zhejiang University-SCIENCE A, Vol. 6, pp. 1386-1393, Dec. 2005.
[38] S. Y. Semenov, J. Kellam, P. Althausen, T. Williams, A. Abubakar, A. Bulyshev, Y. Sizov, "Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment", Physics Medicine Biology, Vol. 52, pp. 5705–5719, Sep. 2007.
[39] J. K. Seo, O. Kwon, E. J. Woo, "Magnetic resonance electrical impedance tomography (MREIT): Conductivity and current density imaging", Journal of Physics: Conference Series, Vol. 12, pp. 140-155, Jun. 2005.
[40] M. R. Yousefi, "A combined mesh free-finite element method for solving the forward problem in magnetic induction tomography and designing a laboratory prototype", PhD Thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2014 (in Persian).
[41] H. Griffiths, "Magnetic induction tomography", Measurement Science and Technology, Vol. 12, pp. 1126-1131, Dec. 2001.
[42] A. J. Peyton, Z. Z. Yuy, G. Lyony, S. Al-Zeibaky, J. Ferreiraz, J. Velezz, F. Linharesz, A. R. Borgesz, H. L. Xiongx, N. H. Saundersk, M. S. Becky., "An overview of electromagnetic inductance tomography: Description of three different systems", Measurement Science and Technology, Vol. 7, pp. 261-271, Mar. 1996.
[43] H.-Y. Wei, M. Soleimani, "A magnetic induction tomography system for prospective industrial processing applications", Chinese Journal of Chemical Engineering, Vol. 20, pp. 406-410, April 2012.
[44] M. Zhang, L. Ma, M. Soleimani, "Magnetic induction tomography guided electrical capacitance tomography imaging with grounded conductors", Measurement, Vol. 53, pp. 171-181, Jul. 2014.
[45] L. Ma, A. Hunt, M. Soleimani, "Experimental evaluation of conductive flow imaging using magnetic induction tomography", International Journal of Multiphase Flow, Vol. 72, pp. 198-209, Jun. 2015.
[46] H. Scharfetter, H. K. Lackner, J. Rosell, "Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues", Physiological Measurement, Vol. 22, pp. 131–146, Feb. 2001.
[47] H. Scharfetter A. Kostinger, S. Issa, "Spectroscopic 16 channel magnetic induction tomography: the new Graz MIT system", Proceedings of the IFMBE, pp. 452–455, Berlin, Heidelberg, Sep. 2007.
[48] S. Watson, R. J. Williams, W. Gough, H. Griffiths, "A magnetic induction tomography system for samples with conductivities below 10 S m−1", Measurement Science and Technology, Vol. 19, 045501 (11pp.), April 2008.
[49] C. H. Igney, S. Watson, R. J. Williams, H. Griffiths, O. Dossel, "Design and performance of a planar-array MIT system with normal sensor alignment", Physiological Measurement, Vol. 26, pp. 263–278, April 2005.
[50] G.S. Park, S. Kang, "A study on the determination of the object shape in magnetic inductance tomography system", Proceedings of the IEEE/CEFC, pp. 77-77, Miami, FL, USA, May 2006.
[51] G. S. Park, "Development of a magnetic inductance tomography system", IEEE Trans. on Magnetics, Vol. 41, pp. 1932-1935, May. 2005.
[52] M. Soleimani, C. Ktistis, X. Ma, W. Yin, W. R. B Lionheart, A. J. Peyton, "Magnetic induction tomography: image reconstruction on experimental data from various applications", Proceedings of 6th Conference on Biomedical Applications of Electrical Impedance Tomography, London, UK, 34955 (4pp.), Jun. 2005.
[53] Z. Xu, H. Luo, W. He, C. He, X. Song, Z. Zahng, "A multi-channel magnetic induction tomography measurement system for human brain model imaging", Physiological Measurement, Vol. 30, pp. 175–186, Jun. 2009.
[54] J. Caeiros, B. Gil, N. B. Br´as, R. C. Martins, "A differential high-resolution motorized multi-projection approach for an experimental Magnetic Induction Tomography prototype", Proceedings of the IEEE/MeMeA, pp. 12836711, Budapest, Hungary, May 2012.
[55] J. R. Feldkamp, "Single-coil magnetic induction tomographic three-dimensional imaging." Journal of Medical Imaging, Vol. 2, pp. 013502, Jan. 2015.
[56] C. Deans, L. Marmugi, S. Hussain, F. Renzoni, "Electromagnetic induction imaging with a radio-frequency atomic magnetometer", Applied Physics Letters, Vol. 108, pp. 103503, Mar. 2016.
[57] M. Luca, F. Renzoni, "Optical magnetic induction tomography of the heart."Scientific reports, Vol. 6, pp. 23962, April 2016.
[58] S. R. Seidnezhad, "Electrical current tomography", MS thesis, Electrical Engineering Department, Sharif University of Technology, 1992 (in Persian).
[59] M. Soleymani, "Design and implementation of a tomography system", MS thesis, Electrical Engineering Department, Sharif University of Technology, 2000 (in Persian).
[60] A. Nateghi, "Electrical impedance tomography using APT method", MS thesis, Mechanical Engineering Department, Sharif University of Technology, 2001 (in Persian).
[61] S. R. Molaei, "Study, Analysis, and Modeling of Bioelectrodes for an Electrical Impedance Tomography System", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2008 (in Persian).
[62] N. Dayarian, "Finite element modeling and implementation of an electrical impedance tomography system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2008 (in Persian).
[63] S. A. Hamidi, "Design and implementation of a digital phase-sensitive demodulator for use in electrical tomography systems", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2009 (in Persian).
[64] A. Nasori, "Improve and determination of resolution in an electrical impedance tomography system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2010 (in Persian).
[65] M. R. Yousefi, A. Mohammadi, R. Jafari, "Improving the Voltage Measuring in Electrical Impedance Tomography Based on Phase-Sensitive Demodulator", Proceedings of ICBEM, 6 papers, Tehran, Iran, Dec. 2013 (in Persian).
[66] K. Dor, "Design and implementation of electrical capacitance tomography (ECT) system", MS thesis, Electrical Engineering Department, K. N. Toosi University of Technology, 2009 (in Persian).
[67] H. Scharfetter, K. Hollaus, J. Rosell-Ferrer, R. Merwa, "Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio", Annals of Biomedical Engineering, Vol. 34, pp. 1786–98, Nov. 2006.
[68] A. Korjenevsky, V. Cherepenin, S. Sapetsky, "Magnetic induction tomography: Experimental realization", Physiological Measurement, Vol. 21, pp. 89–94, Feb. 2000.
[69] X. Ma, S. R. Higson, A. Lyons, A. J. Peyton, "Development of a fast electromagnetic induction tomography system for metal process applications", Proceedings of WCIPT, pp. 196–201, Aizu, Japan, Sep. 2005.
[70] H. Scharfetter, R. Merwa, K. Pilz, "A new type of gradiometer for the receiving circuit of magnetic induction tomography", Physiological Measurement, Vol. 26, pp. S307–S318, April 2005.
[71] Z. Zakaria, R. A Rahim, M. S. B. Mansor, S. Yaacob, N. M. N. Ayob, S. Z. M. Muji, M. H. F. Rahiman, S. M. K. S. Aman, "Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography", Sensors, Vol 12, pp. 7126-7156, May. 2012.
[72] R. Cantor, A. Hall, A. Matlachov, "Thin-film planar gradiometer with long baseline", Journal of Physics: Conference Series, Vol. 43, pp. 1223–1226, Sep. 2006.
[73] C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, O. Dössel, "Planar system for magnetic induction conductivity measurement using a sensor matrix", Physiological Measurement, Vol. 25, pp. 403–411, Oct. 2004.
K. Stawicki, S. Gratkowski, M. Komorowski, T. Pietrusewicz, "A new transducer for magnetic induction tomography", IEEE Trans. on Magnetics, Vol. 45, pp. 1832–1835, Oct. 2009.