بهینهسازی کاربری زمین با استفاده از الگوریتم فرا ابتکاریِ جستوجوی هارمونیک (مطالعه موردی: محلهی بابلدشت شهر اصفهان)
محورهای موضوعی : آمایش محیط
1 - گروه شهرسازی، دانشکده معماری و شهرسازی، دانشگاه هنر اصفهان، اصفهان، ایران
کلید واژه: الگوریتم ژنتیک, الگوریتم جستوجوی هارمونیک, بهینهسازی کاربری زمین, محلهی بابلدشت اصفهان,
چکیده مقاله :
برنامه ریزی کاربری زمین به دنبال تخصیص کاربری های مختلف به منبع ارزشمند و محدود زمین به طور بهینه بوده که با استفاده ی حداکثری از آن بیش ترین مطلوبیت را برآورده کرده و اهداف برنامه ریزی کاربری زمین را تا بالاترین میزان محقق سازد. با توجه به تعدد اهداف مطرح در تخصیص کاربری زمین، لازم است تا نوعی سازش میان این اهداف به وجود آمده، به گونه ای که هر یک از اهداف متناسب با اولویت خود تا حد مشخصی تحقق یابند و آرایش بهینه ی کاربری ها حاصل گردد. بهینهسازی تخصیص کاربری، روشی است که امکان حل چنین مسائلی را فراهم میآورد. به دلیل پیچیدگی بسیار بالای مسئلهی بهینه سازی کاربری زمین، چه از نظر تعدادِ اهداف و چه از نظر اندازه و زمانِ حلِ مسئله، حل این مسئله بر الگوریتمهای فراابتکاری تکیه دارد. در پژوهش حاضر، الگوریتم جستوجوی هارمونیک برای بهینهسازی تخصیص کاربری زمین توسعه یافته است. اهداف بهینهسازی سه هدف: بیشینهسازی سازگاری، بیشینه سازی فشردگی، و بیشینهسازی تناسب اراضی را در بر می گیرد. قابلیت این الگوریتم در تخصیص بهینه ی هفت گونه ی کاربری، مورد آزمون قرار گرفته و نتایج آن با الگوریتم ژنتیک مقایسه شده است. مقایسهی انجام شده نشان میدهد که الگوریتم جست و جوی هارمونیک، از کارآیی (68 درصد) و کیفیت بالاتری (27.7 درصد) نسبت به الگوریتم ژنتیک برخوردار در حل مسئله ی طرح شده در این پژوهش برخوردار است. نتایج نشان می دهند که با به کارگیری الگوریتم پیشنهادی، میزان مطلوبیت کل در گزینه ی بهینه 54.07 درصد بالاتر از وضع موجود کاربری ها در مطالعه ی موردی می باشد.
Urban planning seeks to allocate the valuable and limited land resources among different land types. During this process various conflicting objectives are emerged and prepared, and land use planners should proffer land use layouts satisfying these kinds of objectives. Due to these facts, land use allocation is a multi-objective optimization problem that deals with a large set of data and variables and optimization methods have been developed to facilitate solving this kind of problem. As land use optimization is a complex NP-hard problem, current exact methods are not able to solve such problem and land use optimization relies on application of meta-heuristic algorithms. In this paper, a meta-heuristic algorithm is developed and applied based on harmonic search algorithm for solving land use optimization problem. In this paper, seven land types (residential, commercial, cultural, educational, medical, sport and green space) are allocated to 200 allocation cells with size 1000 m2 subject to compactness, compatibility and suitability maximization. The outputs of the harmonic search algorithm were compared to a common population-based algorithm, genetic algorithm. The results demonstrated that for the defined problem the harmonic search algorithm was more acceptable than genetic algorithm in terms of solution quality and algorithm efficiency. It was 98.9 percent faster than genetic algorithm. The results also showed that the land use layouts achieved by both algorithms had been better than the current state of land use distribution. Thus, the cross-cutting method represented in this paper can be used as a useful tool in the hands of urban planners and decision makers, and supports the land use planning process.
1- بشیری، م.، کریمی، ح. 1390. کاربرد الگوریتمهای ابتکاری و فراابتکاری در طراحی سیستمهای صنعتی. دانشگاه شاهد. 159 صفحه.
2- پیراسته، ب.، رفیعیان، م.، احمدیان، ر. 1395. تحلیل تعارضات کاربری زمین با بهرهگیری از مدل راهبرد شناسایی تعارضات کاربریها (LUCIS) در شهرستان تنکابن. فصلنامه آمایش محیط، شماره 38، 48-69.
3- جلالی نائینی، غ.، جعفری اسکندری، م.، نوذری، ح. 1391. بهینهسازی مهندسی با تکیه بر روشهای فراابتکاری. موسسه دیباگران تهران. 256 صفحه.
4- حاتمی، د.، عربی، زهرا.، رحمانی، ا. 1394. مکانیابی بهینهی فضای سبز شهری با استفاده از مدل Fuzzy Logic و AHP، در محیط GIS (مونه موردی: شهر مشهد). فصلنامه آمایش محیط، شماره 32، 64-84.
5- حکمتنیا، ح.، موسوی، م. 1385. کاربرد مدل در جغرافیا با تاکید بر برنامهریزی شهری و ناحیهای. انتشارات علم نوین. 390 صفحه.
6- شایگان، م.، علیمحمدی، ع.، منصوریان، ع. 1391. بهینهسازی چندهدفه تخصیص کاربری اراضی با استفاده از الگوریتم ژنتیک نخبهگرا. نشریه سنجش از دور و GIS ایران، ج 4، شماره 2، 1-18.
7- لحمیان، ر. 1396. پایش سازگاری کاربریهای اراضی با برنامهریزی صنعتی در محیط سامانهی اطلاعات جغرافیایی(مطالعهی موردی: شهرستان ساری). فصلنامه آمایش محیط، شماره 38، 170-190.
8- مهندسین مشاور شهر و خانه. 1386. طرح بازنگری طرح تفصیلی شهر اصفهان مناطق 7 و 8. معاونت شهرسازی و معماری شهرداری اصفهان.
9- Aerts, J.C., and Heuvelink, G.B.M. 2002. Using simulated annealing for resource allocation. International Journal of Geographical Information Science, 16(6): 571–587.
10- Balling, R.J., Taber, J.T., Brown, M.R., and K. Day, K. 1999. Multi objective urban planning using genetic algorithm. Journal of Urban Planning and Development, 125 (2): 86-99.
11- Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., and Chen, J. 2011. Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. International Journal of Geographical Information Science, 25(12): 1949-1969.
12- Cao, K., Bo, H., Shaowen, W., and Hui, L. 2012. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Computers, Environment and Urban Systems, 36:257-269.
13- Chandramouli, M., Houang, B., and Xue, L. 2009. Spatial Change Optimization: Integrating GA with Visualization for 3D Scenario Generation. Photogrammetric Engineering & Remote Sensing, 75(8): 1015-1022.
14- Chang, Y.C., and Ko, T. 2014. An interactive dynamic multi-objective programming model to support better land use planning. Land use policy, 36: 13-22.
15- Coello, C., Lamont, G., and Van Veldhuizen, D. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. USA: Springer.
16- Duh, J., and Brown, D.G. 2007. Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation. Computers, Environment & Urban Systems, 31 (3): 253–281.
17- Feng, C.M., and Lin, J.J. 1999. Using a genetic algorithm to generate alternative sketch maps for urban planning. Computers, Environment & Urban Systems, 23(2): 91-108.
18- Hillier, F., and Lieberman, G. 2001. Introduction to operations research. USA: McGraw-Hill.
19- Leccese, M., and McCormick, K. 2000. Charter of the new urbanism. New York: McGraw-Hill Professional.
20- Ligmann.Z, A., Church, R., and Jankowski, P. 2008. Spatial optimization as a generative technique for sustainable multiobjective land‐use allocation. International Journal of Geographical Information Science, 22(6): 601-622.
21- Liu, X., Lao, C., Li, X., Liu, Y., and Chen, Y. 2012. An integrated approach of remote sensing, GIS and swarm intelligence for zoning protected ecological areas. Landscape Ecology, 27:447-463.
22- Masoomi, Z., Mesgari, M., and Hamrah, M. 2013. Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. International Journal of Geographical Information Science, 27(3): 542-566.
23- Nastaran, M., Ghalehnoee, M., and Sahebgharani, A. 2014. Ranking sustainability of urban districts through factor and cluster analysis (Case study: municipal districts of Isfahan). Armanshahr, 12: In press.
24- Peng, J., Wang, Y.L., Wu, J.S., and Li, Y.F. 2006. Ecological effects associated with land-use change in China’s southwest agricultural landscape. International Journal of Sustainable Development & World Ecology, 13(4): 315-325.
25- Randolph, J. 2004. Environmental land use planning and management. Washington DC: Island Press.
26- Ravindra, K.A., B.Orlin, J., and Tiwari, A. 2000. A greedy genetic algorithm for quadratic assignment problem. Computers & Operation Research, 24: 917-934.
27- Sante-Riveira, I., M. Boullon-Magan, R. Crecente-Maseda., and Miranda-Barros, D. 2008. Algorithm based on simulated annealing for land-use allocation. Computers & Geosciences, 34(3): 259-268.
28- Verburg, P.H., Veldkamp, A., and Fresco, L.O. 1999. Simulation of changes in the spatial pattern of land use in China. Applied Geography, 19(3): 211-233.
29- Wang, X., Yu, S., and Huang, G. H. 2004. Land allocation based on integrated GIS optimization modeling at a watershed level. Landscape and Urban Planning, 66, 61–74.
30- Winston, L. 2004. Operations research applications and algorithms. USA: Thomson-Brooks/Cole.
31- Zhang, H., Zeng, Y., and Bian, L. 2010. Simulating Multi-Objective Spatial Optimization Allocation of Land Use Based on the Integration of Multi-Agent System and Genetic Algorithm. International Journal of Environmental Research, 4(4): 765-776.
_||_