اثر نوع ریز نمونه، تنظیم کننده¬های رشد گیاهی و انواع نورهای LED روی مرحله استقرار و پرآوری زاموفیلیا (Zamioculcas zamiifolia)
محورهای موضوعی : کشت بافت
فاطمه موسعلی
1
,
منصور مطلوبی
2
,
علیرضا مطلبی آذر
3
,
محمدولی حبیبی
4
,
اصغر محمدی
5
1 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران،
2 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران،
3 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران،
4 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران،
5 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران،
کلید واژه: بنزیل آمینو پورین, کشت بافت , کیفیت نور, نور آبی, نفتالین, استیک اسید,
چکیده مقاله :
زاموفیلیا یکی از گیاهان زینتی با ارزش است که تکثیر معمول آن از طریق رویشی صورت میگیرد. به همین دلیل به تعداد زیادی گیاه مادری جهت تولید تجاری آن نیاز است که مقرون به صرفه نیست. بنابراین هدف از انجام این پژوهش معرفی یک روش کشت درون شیشهای برای افزایش سریع گیاه زاموفیلیا میباشد. در پژوهش حاضر اثر غلظتهای مختلف بنزیل آمینو پورین (BAP) (1و 2 میلیگرم بر لیتر) و نفتالن استیکاسید (NAA) (صفر و 1/0 میلیگرم بر لیتر) و همچنین نورهای LED آبی (400-500 نانومتر) و قرمز (600-700 نانومتر) بر تشکیل پینهزایی و پروتوکروم (برگچه، قسمت میانی برگچه و جفت برگچهای) بررسی شد. نتایج نشان داد بهترین تیمار برای پینهزایی با بیشینه انگیزش 75/93% و تشکیل پروتوکورم 66/66% ، تیمار 2 میلیگرم بر لیتر BAP به همراه 1/0 میلیگرم بر لیتر NAA و در نور قرمز بود. تشکیل پینه، تحت نور آبی و قرمز، به ترتیب در 90 و 85 درصد موارد از محل برش و باززایی پروتوکورم درهمین شرایط، به ترتیب، 80 و 90 درصد به صورت غیر مستقیم بود. همچنین تحت نور آبی و قرمز به ترتیب، 95 و 97 درصد ظهور پروتوکورم از محل برش مشاهده شد. بیشترین میزان باززایی پروتوکورمها (95 درصد) در تیمار 1/0 میلیگرم بر لیتر NAA، به صورت غیر مستقیم بود که در نبود NAA، پینهزایی 92 درصد و پروتوکورم 100 درصد در محل برش تشکیل شدند. باززایی پروتوکورم در ریزنمونه قاعده و قسمت میانی برگچه با رگبرگ، 75 درصد به صورت غیر مستقیم بود و در ریزنمونه جفت برگچهای هیچگونه باززایی مشاهده نشد. به طور کلی بهترین ترکیب هورمونی، کیفیت نور و نوع ریزنمونه برای تشکیل پینه و پروتوکورم، 2 میلیگرم در لیتر BAP به همراه 1/0 میلیگرم در لیتر NAA و نور قرمز در ریزنمونه قاعده برگچه بود.
amioculcas zamiifolia plant is one the most valuable foliage plants which is commonly propagated using vegetative methods. This technique requires a great number of mother plants to provide adequate cuttings for commercial propagation which hardly seem to meet the most economical expectations. However, due to the slow growth habit of this plant, even under ideal growing conditions, its commercial and mass production are limited by some species-related characteristics. Therefore, developing an improved method of micropropagation which lead to a fast and reliable mass propagation technique may overcome most of these limitations especially at commercial scale. In this regard, this research was conducted and aimed to introduce an efficient micropropagation method in in-vitro condition for rapid propagation of this plant. Two different concentrations of BAP (1 and 2 mg L-1) and NAA (0 and 0.1 2 mg L-1 ) were applied on the explants taken from one of the three different positions of the leaflets (i.e., lower, middle and upper parts) cultured in MS medium and treated with blue (400-500 nm) or red (600-700 nm) light supplied by LED luminaries The results showed that the best treatment for callus and protocorm formation with the maximum stimulation (93.75%) and (66.66%) was the application of 2 mg/L BAP along with 0.1 mg/L NAA in The light was red. Callus production occurred in cut surfaces by 90% under blue and 85% under red light, while these lights induced protocorm indirectly by 80% and 90% respectively, leaving the rest to be regenerated by directly. Blue and red light induced protocorm emergence by 95% and 97% respectively from the cut surface and the parts around the cut location were responsible for the emergence of the remained protocorms. The highest rate of regeneration of protocorms (95%) in the treatment of 0.1 mg/liter NAA was indirect, and in the absence of NAA, callus generation was 92% and vprotocorms were formed 100% at the cut surface. Protocorm regeneration in lower and middle parts of leaflets occurred 75% as indirectly, and no regeneration was observed in the middle and upper parts of the leaflets. In general, the best combination of the applied treatments for the both callus and protocorm regeneration was found as follows: BA 2 mg L -1 with NAA 0.1 mg L -1 applied for explants of lower parts of the leaflets under red light spectrum.
Antony, J. J., Sundarasekar, J., Rathinam, X., Subramaniam, S. and Marimuthu, K. (2014). Microscopical Analysis Of In Vitro Mokara Broga Giant Orchid. Emirates Journal of Food and Agriculture. 26: 73-81.
Balilashaki, Kh. and Ghasemi Ghehsareh, M. (2016). 'Micropropagation of Phalaenopsis amabilis var. ‘Manila’ by leaves obtained from in vitro culturing the nodes of flower stalks'. Notulae Scientia Biologicae, 8 (2): 164-169.
Bantis, F., Ouzounis, T. and Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198: 277-283.
Baque, M. A., Shin, Y. K., Elshmari, T., Lee, E. J. and Paek, K. Y. (2011). Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids ('Bukduseong'×'Hyesung'and'Chunkwang'×'Hyesung'). Australian Journal of Crop Science, 5(10): 1247-1254.
Bektas, E., Cuce, M. and Sokmen, A. (2013). In vitro germination, protocorm formation, and plantlet development of Orchis coriophora (Orchidaceae), a naturally growing orchid species in Turkey. Turkish Journal of Botany, 37(2):336-342.
Bonnett, H. T. (1972). Phytochrome regulation of endogenous bud development in root cultures of Convolvulus arvensis. Planta, 106(4): 325-330.
Bourget, C.M. (2008). An introduction to light-emitting diodes. HortScience. 43: 1944–1946.
Burritt, D. J. and Leung, D. W. (2003). Adventitious shoot regeneration from Begonia× erythrophylla petiole sections is developmentally sensitive to light quality. Physiologia Plantarum, 118(2): 289-296.
Chen, J. T. and Chang, W. C. (2004). TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant cell, tissue and organ culture. 79: 315-320.
Chen, Y. C., Chang, C. and Lin, H. L. (2020). Topolins and red light improve the micropropagation efficiency of passion fruit (Passiflora edulis Sims)‘Tainung . Hortscience. 55(8): 1337-1344.
Ding, Z., Galván-Ampudia, C. S., Demarsy, E., Łangowski, Ł., Kleine-Vehn, J., Fan, Y. and Friml, J. (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biology. 13(4): 447-452.
Economou, A. S. and Read, P. E. (1986). Effect of red and far-red light on azalea microcutting production in vitro and rooting in vivo. In Proceedings of 6th International Congress Plant Tissue and Cell Culture, 431.
Feng, C. T., Ho, W. C. and Chao, Y. C. (2006). Basal petiole rot and plant kill of Zamioculcas zamiifolia caused by Phytophthora nicotianae. Plant Disease. 90(8): 1107-1107.
Finlayson, S. A., Krishnareddy, S. R., Kebrom, T. H. and Casal, J. J. (2010). Phytochrome regulation of branching in Arabidopsis. Plant Physiology, 152(4):1914-1927.
Folta, K. M., and Maruhnich, S. A. (2007). Green light: a signal to slow down or stop. Journal of Experimental Botany. 58(12): 3099-3111.
Fridborg, G, and Eriksson, T. (1975). Partial Reversal by Cytokinin and (2‐Chloroethyl)‐Trimethylammonium Chloride of Near‐Ultraviolet Inhibited Growth and Morphogenesis in Callus Cultures. Physiologia Plantarum. 34(2): 162-166.
George, E.F., Hall, M.A. and De Klerk, G.J. (2008). Plant propagation by tissue culture. 3rd ed. Springer, Wageningen, The Netherlands.growth and development of Sabah’s endangered orchid: Phalaenopsis gigantea. AsPac. Journal of Molecular Biology. 7: 211–220.
Gruenwald, B. and Aenicke, C. (2000). Aenicke. PDR for herbal medicine. 2th edition. Medical economics Co. montvale New Jersey. 729-31.
Gupta, S. D. and Jatothu, B. (2013). Biotechnol. growth and morphogenesis. Plant Biotechnology Reports. 7(3): 211-220.
Johkan, M., Shoji, K., Goto, F., Hahida, S. N. and Yoshihara, T. (2012). Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany. 75: 128-133.
Julkiflee, A. L. and Uddain, J. (2014). Efficient micropropagation of Dendrobium sonia-28 for rapid PLBs proliferation. Emirates Journal of Food and Agriculture.26(6): 545-551.
Kadkade, P. G. and Jopson, H. (1978). Influence of light quality on organogenesis from the embryo-derived callus of Douglas fir (Pseudotsuga menziesii). Plant Science Letters. 13(1): 67-73.
Kaldenhoff, R., Henningsen, U. and Richter, G. (1994). Gene activation in suspension-cultured cells of Arabidopsis thaliana during blue-light-dependent plantlet regeneration. Planta. 195(2): 182-187.
Kalimuthu, K., Senthilkumar, R. and Vijayakumar, S. (2007). In vitro micropropagation of orchid, Oncidium sp.(Dancing Dolls). African Journal of Biotechnology, 6(10):106-112.
Khoddamzadeh, A. A., Sinniah, U. R., Kadir, M. A., Kadzimin, S. B., Mahmood, M., and Sreeramanan, S. (2011). In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb. f.) Christenson. Plant Growth Regulation. 65: 381-387.
Kuo, H. L., Chen, J. T. and Chang, W. C. (2005). Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cellular and Developmental Biology-Plant, 41: 453-456.
Le, V. T. and Tanaka, M. (2004). Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid. Environment Control in Biology. 42(1): 57-64.
Liu, M., Xu, Z., Guo, S., Tang, C., Liu, X. and Jao, X. (2014). Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra. Scientia Horticulturae. 174: 112-118.
Lopez, R. G., Blanchard, M. G. and Runkle, E. S. (2007). Propagation and production of Zamioculcas zamiifolia. In VI International Symposium on New Floricultural Crops. 813:559-564.
Luo, J. P., Wang, Y., Zha, X. Q. and Huang, L. (2008). Micropropagation of Dendrobium densiflorum Lindl. ex Wall. through protocorm-like bodies: effects of plant growth regulators and lanthanoids. Plant Cell, Tissue and Organ Culture. 93: 333-340.
Matioc-Precup, M. M. and Cachita-Cosma, D. (2012). The germination and growth of Brassica oleracea L. var. capitata f. rubra plantlets under the influence of colored light of different provenance. Studia Universitatis" Vasile Goldis" Arad. Seria Stiintele Vietii (Life Sciences Series). 22(2): 193.
Mehbub, H., Akter, A., Akter, M., Mandal, M. S. H., Hoque, M., Tuleja, M. and Mehraj, H. (2022). Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants. 11(23): 3208.
Miler, N., Kulus, D., Woźny, A., Rymarz, D., Hajzer, M., Wierzbowski, K. and Szeffs, L. (2019). Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction. In Vitro Cellular and Developmental Biology-Plant. 55: 99-108.
Morelli, G. and Ruberti, I. (2000). Shade avoidance responses. Driving auxin along lateral routes. Plant physiology.122(3): 621-626.
Morrow, R. C. (2008). LED lighting in horticulture. HortScience. 43(7): 1947-1950.
Murdad, R., Latip, M. A., Aziz, Z. A. and Ripin, R. (2007). Effects of carbon source and potato homogenate on in vitro growth and development of Sabah’s Endangered orchid: Phalaenopsis gigantea. In Proceedings Asia Pacific Conference on Plant Tissue and Agribiotechnology (APaCPA). 18(1):197-200.
Nagaraju, V., Das, S. P., Bhutia, P. C. and Upadhyaya, R. C. (2003). Response of Cymbidium lunavian Atlas protocorms to media and benzyl amino purine. Indian Journal of Horticulture. 60(1): 98-103.
Nayak, N. R., Sahoo, S., Patnaik, S. and Rath, S. P. (2002). Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl.(Orchidaceae). Scientia Horticulturae. 94(1-2): 107-116.
Ng, C. Y., and Saleh, N. M. (2011). In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell, Tissue and Organ Culture (PCTOC). 105: 193-202.
Ni, K. (2015). Zamioculcas zamiifolia plant tissue culture method. Anhui Agricultural Science Bulletin 10(6): 56-63.
Papafotiou, M., and Martini, A. N. (2009). Effect of position and orientation of leaflet explants with respect to plant growth regulators on micropropagation of Zamioculcas zamiifolia Engl.(ZZ). Scientia Horticulturae. 120(1): 115-120.
Saebo, A., Krekling, T., and Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture. 41: 177-185.
Sayadi Nejad, M., and Sadeghi, S. M. (2019). Optimization of callus production and regeneration of zamiifolia (Zamioculcas zamiifolia). Journal of Horticultural Science. 33(3): 405-415.
Seibert, M., Wetherbee, P. J. and Job, D. D. (1975). The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus. Plant Physiology. 56(1): 130-139.
Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J. and Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum. 30: 339-343.
Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Society for Experimental Biology. 11: 118-131.
Taghizadeh, M., Ahvazi, M. and Naghinezhad, A. (2004). Determination of growth and distribution of Centella asiatica in the Anzali lagoon.
Tanaka, M. (2001). Morphogenesis in the PLB segments of Phalaenopsis cultured under LED irradiation system. Journal of the Japanese Society for Horticultural Science. 70(1): 306.
Thongkham, L. and Phavaphutanon, L. (2018). Effect of position and size of leaflets on rooting and rhizome formation of ZZ plant (Zamioculcas zamiifolia (Lodd.) Engl.) leaflet cuttings. Agriculture and Natural Resources. 52(3): 246-249.
Vanzie-Canton, S. D. and Leonhardt, K. W. (2007). In vitro callus induction and plantlet regeneration protocol developed for the oryzalin treatment of Zamioculcas zamiifolia (lodd.) Engl.(araceae). In VI International Symposium on New Floricultural Crops. 813: 201-208.
Weis, J. S. and Jaffe, M. J. (1969). Photoenhancement by blue light of organogenesis in tobacco pith cultures. Physiologia Plantarum. 22(1): 171-176.