تنش خشکی و راهکارهای مقابله با آن در گیاهان زراعی
محورهای موضوعی : تنشاسماعیل قلی نژاد 1 , رضا درویش زاده 2 , عباس ابهری 3
1 - گروه علمی علوم کشاورزی، دانشگاه پیام نور، تهران، ایران،
2 - گروه تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران،
3 - گروه علمی علوم کشاورزی، دانشگاه پیام نور، تهران، ایران
کلید واژه: "اجتناب", "پتانسیل اسمزی", "تبخیر و تعرق", "تحمل", "تنش", "فرار از خشکی", "مکانیسم خشکی",
چکیده مقاله :
تنش خشکی روی جنبه های مختلف رشد و نمو گیاهان (رشد رویشی، زایشی، پیدایش و تشکیل گل، گرده افشانی و لقاح و تشکیل دانه) تاثیر می گذارد. برای کاهش اثرات تنش خشکی بر گیاهان، شناسایی مکانیسم های عکس العمل گیاه در برابر تنش خشکی بسیار مهم است. در پاسخ به تنش خشکی در گیاهان تغییرات مورفوفیزیولوژیکی، بیوشیمیایی، سلولی و مولکولی رخ می دهند که برآیند این تغییرات بهبود در سیستم ریشه، ساختار برگ، تنظیم اسمزی، محتوای نسبی آب و تنظیم روزنه و برخی عوامل دیگر است. نمود فنوتیپی مواجهۀ گیاهان با تنش خشکی به صورت فرار از خشکی (زودرسی یا دوره رشد کوتاه، حساسیت به طول روز و کنترل پنجهدهی)، اجتناب از خشکی (سیستم ریشهای توسعه یافته، هدایت روزنهای مطلوب، بهبود اندازه و فراوانی روزنهها، تجمع آبسیزیک اسید و ضخامت کوتیکول و قشر مومی روی برگ)، تحمل خشکی (تنظیم فشار اسمزی، تنظیم غیر فعال، تنظیم فعال، تجمع پرولین و جابجایی مواد پرورده) و بازیافت بروز پیدا می کند. از روش های مدیریتی بهبود تحمل تنش خشکی می توان ایجاد ارقام متحمل، استفاده از اسمولیت های خارجی مانند گلیسین بتائین و پرولین، محلول پاشی با هورمونهای گیاهی مانند آبسیزیک اسید، سالسیلیک اسید (آسپرین)، جیبرلیک اسید، جاسمونیک اسید، براسینو استروییدها و پلی آمین ها، کاربرد خارجی آنتی اکسیدان هایی مانند گلوتاتیون، آسکوربیک اسید (ویتامین C)، توکوفرول (ویتامین E) و اکسید نیتریک، محلول پاشی با عناصر ریز مغذی مانند آهن و روی، محلول پاشی با عناصر کمیاب مانند سیلیکون و سلنیوم و برهمکنش های میکروبی گیاهان مانند باکتری های محرک رشد و قارچ ها اشاره کرد. مقاله حاضر یک مقاله مروری است که با جستجو در مقاله های مرتبط در سایت های معتبر (Google scholar, Web of science, PubMed, Scopus, sid) بدست آمده است و با هدف بررسی اثرات، مکانیسم های تحمل، روش های پژوهش، صفات مهم قابل اندازه گیری، مدیریت و کنترل تنش خشکی تهیه شده است.
Drought stress affects various aspects of plant growth (vegetative growth, reproductive growth, flower formation, pollination, fertilization, and seed formation). To reduce the effects of drought stress on plants, it is important to determine the mechanisms of plant response to drought stress. In response to drought stress, plants experience morphophysiological, biochemical, cellular, and molecular changes with the ultimate result of improved root system, leaf structure, osmotic regulation, relative water content, and stomatal regulation. The phenotypic manifestations in plants facing drought stress include drought escape (early or short growing period, day length sensitivity, and tiller control), drought avoidance (developed root system, stomatal conductance, size and frequency of stomata, accumulation of abscisic acid, and cuticle thickness and waxy crust on the leaf), drought tolerance (osmotic pressure regulation, passive regulation, active regulation, proline accumulation, and displacement of sap phloem materials), and recovery (improvement). Management methods to improve drought stress tolerance include the development of tolerant cultivars, the use of external osmotic protectors such as glycine betaine and proline, spraying with plant hormones such as abscisic acid, salicylic acid (aspirin), gibberellic acid, jasmonic acid, brasino steroids, and polyamines, application of foreign substances with antioxidants such as glutathione, ascorbic acid (vitamin C), tocopherol (vitamin E), and nitric oxide, foliar application of micronutrients such as iron and zinc, spraying with trace elements such as silicon and selenium, and microbial interactions of plants such as growth-promoting bacteria and fungi. This review article is a content analysis study that was carried out by searching related articles in reliable sites (Google scholar, Web of science, PubMed, Scopus, Sid) aiming to investigate the effects, mechanisms of tolerance, research methods, important measurable traits, drought stress management, and control.
Abdelraheem, A., Esmaeili, N., O’Connell, M. and Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products. 130:118–129
Abhari, A. (2020). Predicting factors affecting on grain number of wheat (Triticum aestivum). Journal of plant Ecophysiology. 11(37): 63-73.
Abhari, A. (2022). Terminal physiologic heat stress adjustment and changes during developmental stages of wheat with the use of humic acid in two soil types. Journal of Plant Research. Online publication from 28 October 2021.
Abhari, A., Aziziy, E. and Haresabadi, B. (2017). The effect of super absorbent on yield and yield components of chickpea under season terminal drought stress conditions. Journal of Crop Production. 10(1): 191-202.
Abhari, A., Galshi, S., Latifi, N. and Kalateh, M. (2006). Effect of terminal drought stress on yield and amino acid proline of wheat genotypes. Journal of Agricultural Science and Technology. 20(6): 57-67.
Abhari, A., Galeshi, S., Latifi, N. and Kalateh, M. (2007). The effects of some growth parameters on grain yield of wheat genotypes yield under drought stress conditions. Journal of Agricultural Sciences and Natural Resources. 14(6): 81-92.
Abhari, A. and Gholinezhad, E. (2019a). Effect of humic acid on grain yield and yield components in chickpea under different irrigation levels. Journal of Plant Physiology and Breeding. 9(2): 19-29.
Abhari, A. and Gholinezhad, E. (2019b). Effect of salicylic acid foliar application on barley water use efficiency in cut-off condition. Iranian Journal of Field Crops Research. 17(1): 157-167.
Abhari, A., Seyed Abadi, M. and Kermani, M. (2019). Physiological study of sugar beet cultivars under drought stress. 2nd International Conference on Medicinal Plants, Organic Agriculture, Natural and Medicinal Materials.
Abhari, A. and Radman, A.R. (2020). Effect of salicylic acid on physiological N efficiency and water use efficiency of barley in cut irrigation condition. Journal of Plant Production Research. 27(2): 187-200.
Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports. 8: 4615.
Abreha, K.B., Enyew, M., Carlsson, A.S., Vetukuri, R.R., Feyissa, T., Motlhaodi, T., Ng’uni, D. and Geleta, M. (2022). Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta. 255:20. https://doi.org/10.1007/s00425-021-03799-7.
Akbari Nodehi, D. (2012). The effect of drought stress at different stages of growth on yield and efficiency of soybean water consumption in Mazandaran. Agricultural Science and Sustainable Production. 22(1): 13-23.
Alet, A.I., S´anchez, D.H., Cuevas, J.C., Marina, M., Carrasco, P., Altabella, T., Tiburcio, A. F. and Ruiz, O.A. (2012). New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science. 182:94–100.
Ali, Q., Anwar, F., Ashraf, M., Saari, N. and Perveen, R. (2013). Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. International Journal of Molecular Sciences. 14: 818–835.
Amin, A.B., Rathnayake, K.N., Yim, W.C., Garcia, T.M., Wone, B., Cushman, J.C. and Wone, B.W. (2019). Crassulacean acid metabolism abiotic stress-responsive transcription factors: a potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science. 10:129.
Amin Kheradmand, M., Shahmoradzadeh Fahraji, S., Fatahi, E. and Mahdi Raoofi, M. (2014). Effect of water stress on oil yield and some characteristics of Brassica napus. International Research Journal of Applied and Basic Sciences. 8:1447–1453.
Amiri Deh Ahmadi, S.R., Parsa, M. and Ganjali, A. (2010). The effects of drought stress at different phenological stages on morphological traits and yield components of a chickpea (Cicer arietinum L.) under greenhouse conditions. Iranian Journal of Field Crops Research. 8(1): 157-166.
Andrea, C., Maud, H. and Mathieu, J. (2022). Impacts of soil conductivity loss on plant transpiration regulation under drought. Conference of Young Soil Scientists Day (Bruxelles). http://hdl.handle.net/2078.1/259876.
Anjum, S.A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I. and Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research. 23:17132–17141
Anjum, S.A., Wang, L.C., Farooq, M., Hussain, M., Xue, L.L. and Zou, C.M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science. 197:177–185
Anwaar, H.A., Perveen, R., Mansha, M.Z., Abid, M., Sarwar, Z.M., Aatif, H.M., Umar, U.D., Sajid, M., Aslam, H.M.U., Alam, M.M., Rizwan, M., Ikram, R.M., Alghanem, S.M.S., Rashid, A. and Khan, K.A. (2019). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences. In Press. 1-6.
Asaf, S., Khan, A.L., Khan, M.A., Imran, Q.M., Yun, B.W. and Lee, I.J. (2017). Osmoprotective functions conferred to soybean plants via inoc- ulation with Sphingomonas sp LK11 and exogenous trehalose. Microbiology Research. 205:135–145.
Atashkar, D. and Dodangeh Balakhani, M. (2020). Drought stress and its evaluation indices in fruit trees. Press of Horticultural Research Institute, Mild and Cold Fruits Research Institute, 42.
Azadi, S., Gharaghani, A. (2016). Effect of calcium and boron spray application on fruit’s quantitative and qualitative characteristics of ‘Golab-e Kohanz’ apple. Journal of Horticultural Science. 47(4); 811-822.
Bagheri Kamar Alia, M. (1996). Investigation of effective physiological indicators in the evaluation of drought tolerant wheat. Master Thesis, Islamic Azad University of Karaj.
Bandurska, H. (2022). Drought Stress Responses: Coping Strategy and Resistance. Plants. 11: 922. https://doi.org/10.3390/plants11070922.
Banu, M.N.A., Hoque, M.A., Watanabe-Sugimoto, M., Islam, M.M., Uraji, M., Matsuoka, K. and Murata, Y. (2010). Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience, Biotechnology, and Biochemistry. 74:2043–2049
Behboudi, F., Tahmasebi Sarvestani, Z., Zaman Kassaee, M., Modares Sanavi, S.A.M. and Sorooshzadeh, A. (2018). Improving growth and yield of wheat under drought stress via application of Sio2 nanoparticles. Journal of Agricultural Science and Technology. 20: 1479-1492.
Bhargava, S. and Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding. 132:21–32.
Chang, Z., Liu, Y., Dong, H., Teng, K., Han, L. and Zhang, X. (2016). Effects of cytokinin and nitrogen on drought tolerance of creeping bent- grass. PLoS ONE. 11:e0154005
Chen, J., Nolan, T.M., Ye, H., Zhang, M., Tong, H., Xin, P. and Yin, Y. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant and Cell. 29:1425–1439.
Comas, L., Becker, S., Cruz, V.M.V., Byrne, P.F. and Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science. 4:442
Danir, S., Sharafi, S. and Gholinezhad, E. (2020). Effect of different levels of drought stress and growth regulators on yield and yield components of common bean (Phaseolus vulgaris L.). Iranian Journal of Pulses Research. 10(1): 63-74.
Debnath, M., Pandey, M. and Bisen P.S. (2011). An Omics Approach to Understand the Plant Abiotic Stress. OMICS A Journal of Integrative Biology. 15(11): 739-762.
Edziri, H., Chehab, H., Aissaoui, F., Boujnah, D. and Mastouri, M. (2021). Photosynthetic, anatom-ical and biochemical responses of olive tree (Olea europaea) cultivars under water stress. Plant Biosystems. 155 (4):740–6.
El-Badri, A.M., Batool, M., Mohamed, I., Wang, Z., Khatab, A., Sherif, A., Ahmad, H., Khan, M.N., Hassan, H.M., Elrewainy, I.M., Kuai, J., Zhou, G. and Wang, B. (2021). Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants. 10(8):1227–1248.
Enayat Gholizadeh, M., Bakhshandeh, A., Qaryneh, M., Alemi, S.K. and Siadat, A. (2013). Response of phenological characteristics of maize hybrids to drought stress. Crop Physiology. 5(18): 5-17.
Espinoza, A., San Martín, A., L´opez-Climent, M., Ruiz-Lara, S., G´omez-Cadenas, A. and Casaretto, J.A. (2013). Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. Jourmal of Plant Physiology. 170(14):1285–1294.
Fang, Y. and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences. 72:673–689.
Fanizza, G. and Ricciardi, L. (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, and stomatal resistance in wine grape genotypes (Vitis vinifera L.). Vitis. 29:371
Farrant, J.M. and Hilhorst, H. (2022). Crops for dry environments. Current Opoinion in Biotechnology. 74: 84-91.
Feng, H., Chen, L., Ding, Y.C., Ma, X.J., How, S.W. and Wu, D. (2022). Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry. 147:108206.
Feng, X., Zhong, L., Tian, Q. and Zhao, W. (2022). Leaf water potential-dependent leaflet closure contributes to legume leaves cool down and drought avoidance under diurnal drought stress. Tree Physiology. tpac075, https://doi.org/10.1093/treephys/tpac075.
Fernandez, O., B´ethencourt, L., Quero, A., Sangwan, R.S. and Cl´ement, C. (2010). Trehalose and plant stress responses: friend or foe? Trends in Plant Science. 15(7):409–417.
Finkel, O.M., Castrillo, G., Paredes, S.H., González, I.S. and Dangl, J.L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology. 38:155–163.
Frimpong, F., Anokye, M., Windt, C.W., Naz, A.A., Frei, M., Van Dusschoten, D. and Fiorani, F. (2021). Proline mediated drought tolerance in the barley (Hordeum vulgare L.) isogenic line is associated with lateral root growth at the early seedlings stage. Plants. 10: 2177.
Gholinezhad, E. (2016). Effect of symbiosis of two species mycorrhiza fungi with Sesame (Sesamum indicum L.) genotypes on seed yield, economic and biotic water use efficiency in different levels of drought stress. Journal of Oil Plants Production. 3(1): 71-84.
Gholinezhad, A. (2017). The effect of different levels of drought stress on the traits associated with germination and early growth of dill seedlings (Anethum graveolens L.). Seed Research. 6(21): 71-57.
Gholinezhad, A. (2018). Effect of drought stress and nano-fertilizer on grain yield, yield components and water use efficiency in dill (Anethum graveolens L.). Journal of Agricultural Science and Sustainable Production. 27(4): 93-105.
Gholinezhad, E., Ayneband, A., Hassanzadeh Ghorttapeh, A., Noormohammadi, Gh. and Bernousi, I. (2009). Study of the effect of drought stress on yield, yield components and harvest index of sunflower hybrid Iroflor at different levels of nitrogen and plant population. Notulae Botanicae Horti AgrobotaniciCluj-Napoca. 37(2): 85-94.
Gholinezhad, E., Darvishzadeh, R. and Bernousi, I. (2013). Effects of drought stress on grain qualitative traits of Iranian confectionary sunflower landraces. Iranian Journal of Genetics and Plant Breeding. 2(2): 9-20.
Gholinezhad, E., Darvishzadeh, R. and Bernousi, I. (2015). Evaluation of sunflower grain yield components under different levels of soil water stress in Azerbaijan. Genetika. 47(2): 581-598.
Gholinezhad, E. and Darvishzadeh, R. (2019). Effect of mycorrhizal fungi on sesame productivity under water stress in low-input agriculture system. Turkish Journal of Field Crops. 24(1): 46-53.
Gholinezhad, E. and Eyvazi, A.R. (2019). The effect of super absorbent polymer and manure fertilizer on water use efficiency of wheat (Triticum aestivum L.) cultivars under different irrigation regimes. Journal of Crops Improvement. 21(3): 275-288.
Gholinezhad, E., Samsami, N. and Abhari, A. (2020). Effect of drought stress, mycorrhiza and bacteria on mother plant on produced seed vigor and its related traits in soybean (Glycine max cv. Kosar). Iranian Journal of Seed Research. 7(1): 99-119.
Ghotbi-Ravandi, A.A., Shahbazi, M., Shariati, M. and Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science. 200: 403–415.
Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12):909–930.
González, J.A., Bruno, M., Valoy, M. and Prado, F.E. (2011). Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. Journal of Agronomy and Crop Science. 197: 81–93.
Goyal, K., Walton, L.J. and Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochemistry. 388(1):151–157.
Guo, P.G., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Von Korff, M., Varshney, R.K., Graner, A. and Volkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany. 60, 3531–3544.
Gupta, M. and Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science. 7:2074.
Habib, N., Ali, Q., Ali, S., Javed, M.T., Haider, M.Z., Perveen, R., Shahid, M.R., Rizwan, M., Abdel-Daim, M.M., Elkelish, A. and Bin-Jumah, M. (2020). Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants. 9(285): 1-24.
Hamilton, S.J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment. 326:1–31.
Harfouche, A., Meilan, R. and Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology. 34(11):1181–1198.
Hassan, M.U., Aamer, M., Chattha, M.U., Tang, H., Shahzad, B., Barbanti, L., Rasheed, A., Afzal, A., Liu, Y. and Huang, G. (2020). The critical role of zinc in plants facing the drought stress. Agriculture. 10(9):396.
Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Barbanti, L., Aamer, M., Iqbal, M.M., Nawaz, M., Mahmood, A., Ali, A. and Aslam, M.T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biology. 155(2):211–234.
Hasani, A. and Hasani, M. (2016). The effect of drought stress on functional and morphological
characteristics of rapeseed. Studies of Natural Resources, Environment and Agriculture. 6(3): 35-41.
Hashem, A., Alqarawi, A.A., Radhakrishnan, R., Al-Arjani, A.B.F., Aldehaish, H.A., Egamberdieva, D. and Abd Allah, E.F. (2018). Arbuscular mycor- rhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences. 25(6):1102–1114.
Hatami, A., Aboutalebi Jahromi, A., Ejraei, A., Mohammadi Jahromi, S.A.
and Hassanzadeh Khankahdani, H. (2023). Study of biochemical traits and mineral elements in date palm fruits under preharvest foliar application of organic fertilizers and micronutrients. International Journal of Horticultural Science and Technology. 10(3): 125-140.
Hatfield, J.L., and Dold, C. (2019). Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science. 10:103–17.
Ines, S., Talbi, O., Nasreddine, Y., Rouached, A., Gharred, J., Jdey, A., Hanana, M. and Abdelly, C. (2021). Drought tolerance traits in Medicago species: A review. Arid Land Research and Management. https://doi.org/10.1080/15324982.2021.1936289.
Iqbal, H.M.N., Kyazze, G. and Keshavarz, T. (2013). Advances in the valoriza- tion of Lignocellulosic materials by biotechnology: an overview. Bioresource Technology. 8: 3157–3176
Kang, J., Chu, Y., Ma, G., Zhang, Y., Zhang, X., Wang, M., Lu, H., Wang, L., Kang, G., Ma, D., Xie, Y. and Wang, C. (2022). Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal. In Press, Corrected Proof.
Kapoor, B., Kumar, P., Gill, N.S., Sharma, R., Thakur, N. and Irfan, M. (2022). Molecular mechanisms underpinning the silicon‑selenium (Si‑Se) interactome and cross‑talk in stress‑induced plant responses. Plant and Soil. 1-24.
Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M.N., Siddique, K.H. and Ahmad, P. (2018). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and tempera- ture-induced oxidative stress in Brassica juncea. Scientific Reports. 8:8735.
Kebert, M., Vuksanović, V., Stefels, J., Bojović, M., Horák, R., Kostić, S. and Rapparini, F. (2022). Species-Level Differences in Osmoprotectants and Antioxidants Contribute to Stress Tolerance of Quercus robur L., and Q. cerris L. Seedlings under Water Deficit and High Temperatures. Plants. 11(13):1744.
Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z. and Babar, M.A. (2019). Comparative physiological and metabolic analysis reveals a com- plex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports. 9:2097.
Kim, T.W. and Jehanzaib, M. (2020). Drought risk analysis, forecasting and assessment under climate change. Water. 12(7):1862. doi:10.3390/w12071862.
Kocheki, A. and Rashed Mohassel, M.H. (2014). Principles and operations of demining. University Jihad Publications Ferdowsi University of Mashhad. 200 pages.
Kuppu, S., Mishra, N., Hu, R., Sun, L., Zhu, X., Blumwald, E., Payton, P. and Zhang, H. (2013). Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE. 8: e64190.
Lemes, J.G., Kisiala, A., Morrison, E., Aoki, M., Nogueira, A.P.O. and Neil Emery, R. (2019). Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris) by increasing plant cytokinin levels. Environmental and Experimental Botany. 162: 525–540.
Li, D., Mou, W., Xia, R., Li, L., Zawora, C., Ying, T. and Luo, Z. (2019). Integrated analysis of high-throughput sequencing data shows abscisic acid- responsive genes and miRNAs in strawberry receptacle fruit rip- ening. Horticulture Research. 6:26.
Liu, C.Y., Zhang, F., Zhang, D.J., Srivastava, A.K., Wu, Q.S., Zou, Y.N. (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports. 8:1978.
Lv, Z., Wang, S., Zhang, F., Chen, L., Hao, X., Pan, Q., Fu, X., Li, L., Sun, X. and Tang, K. (2016). Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant and Cell Physiology. 57(9):1961–1971.
Lyons, GH., Genc, Y., Soole, K., Stangoulis, J.C.R., Liu, F. and Graham, R.D. (2009). Selenium increases seed production in Brassica. Plant and Soil. 318:73–80.
Majlesy, A. and Gholinezhad, E. (2014). Phenotype and quality variation of forage maize (Zea mays L.) with potassium and micronutrient application under drought stress conditions. Research in Field Crops. 1(2): 44-55.
Mamnabi, S., Nasrollahzadeh, S., Ghassemi-Golezani, K. and Raei, Y. (2020). Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi Journal of Biological Sciences. 27(3): 797-804.
Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P. and Nguyen, H.T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology. 50:1260-1276.
Martin, P.A., Michelazzo, C., Torres-Ruiz, J.M., Flexas, J., Fernández, J.E., Sebastiani, L. and Diaz-Espejo, A. (2014). Regulation of photosynthe- sis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany. 65:3143–3156.
Mehmood, M., Khan, I., Chattha, M.U., Hussain, S., Ahmad, N., Aslam, M.T. and Hafeez, M.B. (2021). Thiourea application protects maize from drought stress by regulating growth and physiological traits. Pakistan Journal of Science. 73:355–363.
Michel, B.E. and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5): 914-916.
Mousavi, S.F. and Akhavan, S. (2008). Irrigation Principles. Kankash Press. Pp: 414.
Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C.I. and Therios, I. (2011). Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II function- ing of Arabidopsis thaliana leaves. Journal of Plant Growth Regulation. 65:315.
Mozafariyan, M., Pessarakli, M. and Saghafi, K. (2017). Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. Journal of Plant Nutrition. 40:139–144.
Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javai, A. and Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environ- ments. Biotechnology Advances. 32: 429–448.
Nawaz, F., Ashraf, M.Y., Ahmad, R. and Waraich, E.A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research. 151:284–293
Nazar, R., Umar, S., Khan, N.A. and Sareer, O. (2015). Salicylic acid supplemen- tation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany. 98:84–94
Niu, X., Song, L., Xiao, Y. and Ge, W. (2018). Drought-tolerant plant growth- promoting rhizobacteria associated with foxtail millet in a semi- arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology. 8: 2580.
Noreen, S., Athar, H. and Ashraf, M. (2013). Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pakistan Journal of Botany. 45: 1873–1881
Oliver, M.J., Farrant, J.M., Hilhorst, H.W.M., Mundree, S., Williams, B. and Bewley, J.D. (2020). Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology. 71: 435-460.
Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U. and Dolferus, R. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes. 12: 1742.
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.S.P. (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany. 64(2):445–458.
Peleg, Z., Reguera, M., Tumimbang, E., Walia, H. and Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal. 9: 747–758.
Pham, J., Liu, J., Bennett, M.H., Mansfield, J.W. and Desikan, R. (2012). Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytologist. 194(1):168–180.
Pirasteh-Anosheh, H. and Emam, Y. (2019). The role of plant growth regulators in enhancing crop yield under saline conditions: from theory to practice. Iranian Journal of Crop Sciencs. 21(3): 188-209.
Qaseem, M.F., Qureshi, R. and Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports. 9: 55-69.
Quiroga, G., Erice, G., Aroca, R., Chaumont, F. and Ruiz-Lozano, J.M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in Plant Science. 8:1056.
Richard, G.A., Pereira, L., Raes, D. and Smith, M. (1998). Crop evapotranspiration Guidelines for computing crop water requirements. Food and Agriculture organization of the United Nations, Rome, Italy, 304p.
Rodriguez, R.J., White Jr., J.F., Arnold, A.E. and Redman, A.R.A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist. 182(2):314–330.
Ross, A.B., Zangger, A. and Guiraud, S.P. (2014). Cereal foods are the major source of betaine in the Western diet–analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chemistry. 145:859–865
Rouhani, L., Zamani, M.J. and Fotoot, R. (2015). Variation in pore size and density of barley genotypes under drought stress and normal conditions. Journal of Plant Research. 28(5): 986-994.
Rout, G.R. and Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science. 3:1–24.
Ruggiero, A., Punzo, P., Landi, S., Costa, A., Van Oosten, M.J. and Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. Horticulturae. 3(2): 31.
Roy, S. (2016). Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling and Behavior. 11(1):e1117723.
Sabagh, I.E., Abdelaal, K., Omra, R., Hafez, Y.M. and Esmail, S. (2018). Anatomical, biochemical and physiological changes in some Egyptian wheat cultivars inoculated with Puccinia graminis f.Sp. Tritici. Fresenius Environmental Bulletin Fresenius. 27:296–305.
Saeedipour, S. (2013). Relationship of grain yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. Proceedings of the National Academy of Sciences, India Section B. 83: 311–315.
Sarmadnia, Gh. (1993). The importance of environmental stresses in agriculture. Collection of key papers of the First Iranian Congress of Agriculture and Plant Breeding, Faculty of Agriculture. University of Tehran. Pp: 169-157.
Sarshad, A., Talei, D., Torabi, M., Rafiei, F. and Nejatkhah, P. (2020). Effect of irrigation cessation at different growth stages on yield, yield components and grain quality of different grain sorghum cultivars. Crop Physiology. 12(1): 61-75.
Shahzad, B., Rehman, A., Tanveer, M., Wang, L., Park, S.K. and Ali, A. (2021). Salt Stress in Brassica: Effects, tolerance mechanisms, and management. Journal of Plant Growth Regulation. 41(4):1-15.
Sharma, L., Dalal, M., Verma, R.K., Kumar, S.V., Yadav, S.K., Pushkar, S. and Chinnusamy, V. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environmental and Experimental Botany. 150: 9–24
Sinaki, M.J., Majidi Heravan, E., Shiranirad, H., Noormohammadi, G. and Zarei, G.H. (2007). The effects of water deficit during growth stages of canola (Brassica napus L.). American-Eurasin Journal of Agricultural and Environmental Science. 2:417-422.
Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science.15:89–97.
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science. 11:556972. doi: 10.3389/fpls.2020.556972
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences. 63(3):459–62.
Tanveer, M., Shahzad, B., Sharma, A., Biju, S. and Bhardwaj, R. (2018). 24-Epi- brassinolide; an active brassinolide and its role in salt stress tol- erance in plants: a review. Plant Physiology and Biochemistry. 130: 69–79.
Thompson, A.J., Andrews, J., Mulholland, B.J., McKee, J.M.T., Hilton, H.W., Horridge, J.S., Farquhar, G.D., Smeeton, R.C., Smillie, I.R.A., Black, C.R. and et al. (2007). Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiology. 143: 1905–1917.
Timachi, F., Armin, M., Jamimoeini, M. and Abhari, A. (2020). Physiological response of cumin to times and type of stress modulator in rain-fed and irrigated conditions. Russian Journal of Plant Physiology. 67(6): 1163–1172
Topp, G.G. and Davies, J.L. (1985). Time domain reflectometry (TDR) and its application to irrigation scheduling. Advances in Irrigation. 3: 107-127.
Torres, C.A., Sepúlveda, G. and Kahlaoui, B. (2017). Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Frontiers in Plant Science. 8:2129
Trabelsi, L., Gargouri, K., Ben Hassena, A., Mbadra, C. and Gargouri, R. (2019). Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agricultural Water Management. 213: 749–59.
Ullah, A., Mushtaq, H., Fahad, S., Shah, A. and Chaudhary, H.J. (2017). Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology. 86: 119–127
Ullah, A., Sun, H., Yang, X. and Zhang, X. (2018). A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen spe- cies. Physiologia Plantarum. 162:439–454
Urban, J., Ingwers, M., McGuire, M.A. and Teskey, R.O. (2017). Stomatal con- ductance increases with rising temperature. Plant Signaling & Behavior. 12:e1356534
Vahdi, N. and Gholinezhad, E. (2016). Evaluation of drought tolerance of some soybean cultivars. Journal of Water Research in Agriculture. 29(1): 1-9.
Valluru, R., Davies, W.J., Reynolds, M.P. and Dodd, I.C. (2016). Foliar absci- sic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Frontiers in Plant Science. 7:461
Wang, H., Wang, H., Shao, H. and Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science. 7:67.
Wani, S.H., Singh, N.B., Haribhushan, A. and Mir, J.I. (2013). Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Current Genomics. 14(3):157–165.
Weisany, W., Sohrabi, Y., Heidari, G. and Ghassemi-Golezani, K. (2018). Effects of mycorrhiza fungi species application on growth and yield of chickpea (Cicer arietinum L.) under drought stress. Environmental Stresses in Crop Sciences. 12:507–524.
Xiang, J., Chen, X., Hu, W., Xiang, Y., Yan, M. and Wang, J. (2018). Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Reports. 37(11):1585–1595.
Xue, J., Yu, Y., Bai, Y., Wang, L. and Wu, Y. (2015). Marine oil-degrading micro- organisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Current Microbiology. 71:220–228
Yang, A., Akhtar, S.S., Amjad, M., Iqbal, S. and Jacobsen, S.E. (2016a). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science. 202: 445–453.
Yang, Z., Liu, J., Tischer, S.V., Christmann, A., Windisch, W., Schnyder, H. and Grill, E. (2016b). Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 113: 6791–6796.
Yu, L., Zhao, X., Gao, X. and Siddique, K.H.M. (2020). Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management. 228:105906.
Zali, H., Hasanloo, T., Sofalian, O., Asghari, A. and Zeinalabedini, M. (2016). Drought stress effect on physiological parameter and amino acids accumulations in canola. Journal of Crop Breeding. 8(18): 191-203.
Zardak, S.G., Dehnavi, M.M., Salehi, A. and Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere. 6: 31–38.
Zhang, Y., Zhu, J., Khan, M., Wang, Y., Xiao, W., Fang, T., Qu, J., Xiao, P., Li, C. and Liu, J. (2022). Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiology. https://doi.org/10.1093/plphys/kiac428
Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F. and Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water. 12:2127.
Zheljazkov, V.D., Astatkie, T. and Jeliazkova, E. (2013). Effect of foliar appli- cation of methyl jasmonate and extracts of juniper and sagebrush on essential oil yield and composition of ‘Native’spearmint. HortScience. 48: 462–465
Zhou, Y., He, R., Guo, Y., Liu, K., Huang, G., Peng, C. and Duan, L. (2019). A novel ABA functional analogue B2 enhances drought tolerance in wheat. Scientific Reports. 9:2887
Zivcak, M., Kalaji, H.M., Shao, H.B., Olsovska, K. and Brestic, M. (2014). Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. Journal of Photochemistry and Photobiology B, Biology. 137: 107–15.
Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology. 66(6):675–683.
_||_
Abdelraheem, A., Esmaeili, N., O’Connell, M. and Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products. 130:118–129
Abhari, A. (2020). Predicting factors affecting on grain number of wheat (Triticum aestivum). Journal of plant Ecophysiology. 11(37): 63-73.
Abhari, A. (2022). Terminal physiologic heat stress adjustment and changes during developmental stages of wheat with the use of humic acid in two soil types. Journal of Plant Research. Online publication from 28 October 2021.
Abhari, A., Aziziy, E. and Haresabadi, B. (2017). The effect of super absorbent on yield and yield components of chickpea under season terminal drought stress conditions. Journal of Crop Production. 10(1): 191-202.
Abhari, A., Galshi, S., Latifi, N. and Kalateh, M. (2006). Effect of terminal drought stress on yield and amino acid proline of wheat genotypes. Journal of Agricultural Science and Technology. 20(6): 57-67.
Abhari, A., Galeshi, S., Latifi, N. and Kalateh, M. (2007). The effects of some growth parameters on grain yield of wheat genotypes yield under drought stress conditions. Journal of Agricultural Sciences and Natural Resources. 14(6): 81-92.
Abhari, A. and Gholinezhad, E. (2019a). Effect of humic acid on grain yield and yield components in chickpea under different irrigation levels. Journal of Plant Physiology and Breeding. 9(2): 19-29.
Abhari, A. and Gholinezhad, E. (2019b). Effect of salicylic acid foliar application on barley water use efficiency in cut-off condition. Iranian Journal of Field Crops Research. 17(1): 157-167.
Abhari, A., Seyed Abadi, M. and Kermani, M. (2019). Physiological study of sugar beet cultivars under drought stress. 2nd International Conference on Medicinal Plants, Organic Agriculture, Natural and Medicinal Materials.
Abhari, A. and Radman, A.R. (2020). Effect of salicylic acid on physiological N efficiency and water use efficiency of barley in cut irrigation condition. Journal of Plant Production Research. 27(2): 187-200.
Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports. 8: 4615.
Abreha, K.B., Enyew, M., Carlsson, A.S., Vetukuri, R.R., Feyissa, T., Motlhaodi, T., Ng’uni, D. and Geleta, M. (2022). Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta. 255:20. https://doi.org/10.1007/s00425-021-03799-7.
Akbari Nodehi, D. (2012). The effect of drought stress at different stages of growth on yield and efficiency of soybean water consumption in Mazandaran. Agricultural Science and Sustainable Production. 22(1): 13-23.
Alet, A.I., S´anchez, D.H., Cuevas, J.C., Marina, M., Carrasco, P., Altabella, T., Tiburcio, A. F. and Ruiz, O.A. (2012). New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science. 182:94–100.
Ali, Q., Anwar, F., Ashraf, M., Saari, N. and Perveen, R. (2013). Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. International Journal of Molecular Sciences. 14: 818–835.
Amin, A.B., Rathnayake, K.N., Yim, W.C., Garcia, T.M., Wone, B., Cushman, J.C. and Wone, B.W. (2019). Crassulacean acid metabolism abiotic stress-responsive transcription factors: a potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science. 10:129.
Amin Kheradmand, M., Shahmoradzadeh Fahraji, S., Fatahi, E. and Mahdi Raoofi, M. (2014). Effect of water stress on oil yield and some characteristics of Brassica napus. International Research Journal of Applied and Basic Sciences. 8:1447–1453.
Amiri Deh Ahmadi, S.R., Parsa, M. and Ganjali, A. (2010). The effects of drought stress at different phenological stages on morphological traits and yield components of a chickpea (Cicer arietinum L.) under greenhouse conditions. Iranian Journal of Field Crops Research. 8(1): 157-166.
Andrea, C., Maud, H. and Mathieu, J. (2022). Impacts of soil conductivity loss on plant transpiration regulation under drought. Conference of Young Soil Scientists Day (Bruxelles). http://hdl.handle.net/2078.1/259876.
Anjum, S.A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I. and Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research. 23:17132–17141
Anjum, S.A., Wang, L.C., Farooq, M., Hussain, M., Xue, L.L. and Zou, C.M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science. 197:177–185
Anwaar, H.A., Perveen, R., Mansha, M.Z., Abid, M., Sarwar, Z.M., Aatif, H.M., Umar, U.D., Sajid, M., Aslam, H.M.U., Alam, M.M., Rizwan, M., Ikram, R.M., Alghanem, S.M.S., Rashid, A. and Khan, K.A. (2019). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences. In Press. 1-6.
Asaf, S., Khan, A.L., Khan, M.A., Imran, Q.M., Yun, B.W. and Lee, I.J. (2017). Osmoprotective functions conferred to soybean plants via inoc- ulation with Sphingomonas sp LK11 and exogenous trehalose. Microbiology Research. 205:135–145.
Atashkar, D. and Dodangeh Balakhani, M. (2020). Drought stress and its evaluation indices in fruit trees. Press of Horticultural Research Institute, Mild and Cold Fruits Research Institute, 42.
Azadi, S., Gharaghani, A. (2016). Effect of calcium and boron spray application on fruit’s quantitative and qualitative characteristics of ‘Golab-e Kohanz’ apple. Journal of Horticultural Science. 47(4); 811-822.
Bagheri Kamar Alia, M. (1996). Investigation of effective physiological indicators in the evaluation of drought tolerant wheat. Master Thesis, Islamic Azad University of Karaj.
Bandurska, H. (2022). Drought Stress Responses: Coping Strategy and Resistance. Plants. 11: 922. https://doi.org/10.3390/plants11070922.
Banu, M.N.A., Hoque, M.A., Watanabe-Sugimoto, M., Islam, M.M., Uraji, M., Matsuoka, K. and Murata, Y. (2010). Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience, Biotechnology, and Biochemistry. 74:2043–2049
Behboudi, F., Tahmasebi Sarvestani, Z., Zaman Kassaee, M., Modares Sanavi, S.A.M. and Sorooshzadeh, A. (2018). Improving growth and yield of wheat under drought stress via application of Sio2 nanoparticles. Journal of Agricultural Science and Technology. 20: 1479-1492.
Bhargava, S. and Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding. 132:21–32.
Chang, Z., Liu, Y., Dong, H., Teng, K., Han, L. and Zhang, X. (2016). Effects of cytokinin and nitrogen on drought tolerance of creeping bent- grass. PLoS ONE. 11:e0154005
Chen, J., Nolan, T.M., Ye, H., Zhang, M., Tong, H., Xin, P. and Yin, Y. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant and Cell. 29:1425–1439.
Comas, L., Becker, S., Cruz, V.M.V., Byrne, P.F. and Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science. 4:442
Danir, S., Sharafi, S. and Gholinezhad, E. (2020). Effect of different levels of drought stress and growth regulators on yield and yield components of common bean (Phaseolus vulgaris L.). Iranian Journal of Pulses Research. 10(1): 63-74.
Debnath, M., Pandey, M. and Bisen P.S. (2011). An Omics Approach to Understand the Plant Abiotic Stress. OMICS A Journal of Integrative Biology. 15(11): 739-762.
Edziri, H., Chehab, H., Aissaoui, F., Boujnah, D. and Mastouri, M. (2021). Photosynthetic, anatom-ical and biochemical responses of olive tree (Olea europaea) cultivars under water stress. Plant Biosystems. 155 (4):740–6.
El-Badri, A.M., Batool, M., Mohamed, I., Wang, Z., Khatab, A., Sherif, A., Ahmad, H., Khan, M.N., Hassan, H.M., Elrewainy, I.M., Kuai, J., Zhou, G. and Wang, B. (2021). Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants. 10(8):1227–1248.
Enayat Gholizadeh, M., Bakhshandeh, A., Qaryneh, M., Alemi, S.K. and Siadat, A. (2013). Response of phenological characteristics of maize hybrids to drought stress. Crop Physiology. 5(18): 5-17.
Espinoza, A., San Martín, A., L´opez-Climent, M., Ruiz-Lara, S., G´omez-Cadenas, A. and Casaretto, J.A. (2013). Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. Jourmal of Plant Physiology. 170(14):1285–1294.
Fang, Y. and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences. 72:673–689.
Fanizza, G. and Ricciardi, L. (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, and stomatal resistance in wine grape genotypes (Vitis vinifera L.). Vitis. 29:371
Farrant, J.M. and Hilhorst, H. (2022). Crops for dry environments. Current Opoinion in Biotechnology. 74: 84-91.
Feng, H., Chen, L., Ding, Y.C., Ma, X.J., How, S.W. and Wu, D. (2022). Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry. 147:108206.
Feng, X., Zhong, L., Tian, Q. and Zhao, W. (2022). Leaf water potential-dependent leaflet closure contributes to legume leaves cool down and drought avoidance under diurnal drought stress. Tree Physiology. tpac075, https://doi.org/10.1093/treephys/tpac075.
Fernandez, O., B´ethencourt, L., Quero, A., Sangwan, R.S. and Cl´ement, C. (2010). Trehalose and plant stress responses: friend or foe? Trends in Plant Science. 15(7):409–417.
Finkel, O.M., Castrillo, G., Paredes, S.H., González, I.S. and Dangl, J.L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology. 38:155–163.
Frimpong, F., Anokye, M., Windt, C.W., Naz, A.A., Frei, M., Van Dusschoten, D. and Fiorani, F. (2021). Proline mediated drought tolerance in the barley (Hordeum vulgare L.) isogenic line is associated with lateral root growth at the early seedlings stage. Plants. 10: 2177.
Gholinezhad, E. (2016). Effect of symbiosis of two species mycorrhiza fungi with Sesame (Sesamum indicum L.) genotypes on seed yield, economic and biotic water use efficiency in different levels of drought stress. Journal of Oil Plants Production. 3(1): 71-84.
Gholinezhad, A. (2017). The effect of different levels of drought stress on the traits associated with germination and early growth of dill seedlings (Anethum graveolens L.). Seed Research. 6(21): 71-57.
Gholinezhad, A. (2018). Effect of drought stress and nano-fertilizer on grain yield, yield components and water use efficiency in dill (Anethum graveolens L.). Journal of Agricultural Science and Sustainable Production. 27(4): 93-105.
Gholinezhad, E., Ayneband, A., Hassanzadeh Ghorttapeh, A., Noormohammadi, Gh. and Bernousi, I. (2009). Study of the effect of drought stress on yield, yield components and harvest index of sunflower hybrid Iroflor at different levels of nitrogen and plant population. Notulae Botanicae Horti AgrobotaniciCluj-Napoca. 37(2): 85-94.
Gholinezhad, E., Darvishzadeh, R. and Bernousi, I. (2013). Effects of drought stress on grain qualitative traits of Iranian confectionary sunflower landraces. Iranian Journal of Genetics and Plant Breeding. 2(2): 9-20.
Gholinezhad, E., Darvishzadeh, R. and Bernousi, I. (2015). Evaluation of sunflower grain yield components under different levels of soil water stress in Azerbaijan. Genetika. 47(2): 581-598.
Gholinezhad, E. and Darvishzadeh, R. (2019). Effect of mycorrhizal fungi on sesame productivity under water stress in low-input agriculture system. Turkish Journal of Field Crops. 24(1): 46-53.
Gholinezhad, E. and Eyvazi, A.R. (2019). The effect of super absorbent polymer and manure fertilizer on water use efficiency of wheat (Triticum aestivum L.) cultivars under different irrigation regimes. Journal of Crops Improvement. 21(3): 275-288.
Gholinezhad, E., Samsami, N. and Abhari, A. (2020). Effect of drought stress, mycorrhiza and bacteria on mother plant on produced seed vigor and its related traits in soybean (Glycine max cv. Kosar). Iranian Journal of Seed Research. 7(1): 99-119.
Ghotbi-Ravandi, A.A., Shahbazi, M., Shariati, M. and Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science. 200: 403–415.
Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12):909–930.
González, J.A., Bruno, M., Valoy, M. and Prado, F.E. (2011). Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. Journal of Agronomy and Crop Science. 197: 81–93.
Goyal, K., Walton, L.J. and Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochemistry. 388(1):151–157.
Guo, P.G., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Von Korff, M., Varshney, R.K., Graner, A. and Volkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany. 60, 3531–3544.
Gupta, M. and Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science. 7:2074.
Habib, N., Ali, Q., Ali, S., Javed, M.T., Haider, M.Z., Perveen, R., Shahid, M.R., Rizwan, M., Abdel-Daim, M.M., Elkelish, A. and Bin-Jumah, M. (2020). Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants. 9(285): 1-24.
Hamilton, S.J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment. 326:1–31.
Harfouche, A., Meilan, R. and Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology. 34(11):1181–1198.
Hassan, M.U., Aamer, M., Chattha, M.U., Tang, H., Shahzad, B., Barbanti, L., Rasheed, A., Afzal, A., Liu, Y. and Huang, G. (2020). The critical role of zinc in plants facing the drought stress. Agriculture. 10(9):396.
Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Barbanti, L., Aamer, M., Iqbal, M.M., Nawaz, M., Mahmood, A., Ali, A. and Aslam, M.T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biology. 155(2):211–234.
Hasani, A. and Hasani, M. (2016). The effect of drought stress on functional and morphological
characteristics of rapeseed. Studies of Natural Resources, Environment and Agriculture. 6(3): 35-41.
Hashem, A., Alqarawi, A.A., Radhakrishnan, R., Al-Arjani, A.B.F., Aldehaish, H.A., Egamberdieva, D. and Abd Allah, E.F. (2018). Arbuscular mycor- rhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences. 25(6):1102–1114.
Hatami, A., Aboutalebi Jahromi, A., Ejraei, A., Mohammadi Jahromi, S.A.
and Hassanzadeh Khankahdani, H. (2023). Study of biochemical traits and mineral elements in date palm fruits under preharvest foliar application of organic fertilizers and micronutrients. International Journal of Horticultural Science and Technology. 10(3): 125-140.
Hatfield, J.L., and Dold, C. (2019). Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science. 10:103–17.
Ines, S., Talbi, O., Nasreddine, Y., Rouached, A., Gharred, J., Jdey, A., Hanana, M. and Abdelly, C. (2021). Drought tolerance traits in Medicago species: A review. Arid Land Research and Management. https://doi.org/10.1080/15324982.2021.1936289.
Iqbal, H.M.N., Kyazze, G. and Keshavarz, T. (2013). Advances in the valoriza- tion of Lignocellulosic materials by biotechnology: an overview. Bioresource Technology. 8: 3157–3176
Kang, J., Chu, Y., Ma, G., Zhang, Y., Zhang, X., Wang, M., Lu, H., Wang, L., Kang, G., Ma, D., Xie, Y. and Wang, C. (2022). Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal. In Press, Corrected Proof.
Kapoor, B., Kumar, P., Gill, N.S., Sharma, R., Thakur, N. and Irfan, M. (2022). Molecular mechanisms underpinning the silicon‑selenium (Si‑Se) interactome and cross‑talk in stress‑induced plant responses. Plant and Soil. 1-24.
Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M.N., Siddique, K.H. and Ahmad, P. (2018). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and tempera- ture-induced oxidative stress in Brassica juncea. Scientific Reports. 8:8735.
Kebert, M., Vuksanović, V., Stefels, J., Bojović, M., Horák, R., Kostić, S. and Rapparini, F. (2022). Species-Level Differences in Osmoprotectants and Antioxidants Contribute to Stress Tolerance of Quercus robur L., and Q. cerris L. Seedlings under Water Deficit and High Temperatures. Plants. 11(13):1744.
Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z. and Babar, M.A. (2019). Comparative physiological and metabolic analysis reveals a com- plex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports. 9:2097.
Kim, T.W. and Jehanzaib, M. (2020). Drought risk analysis, forecasting and assessment under climate change. Water. 12(7):1862. doi:10.3390/w12071862.
Kocheki, A. and Rashed Mohassel, M.H. (2014). Principles and operations of demining. University Jihad Publications Ferdowsi University of Mashhad. 200 pages.
Kuppu, S., Mishra, N., Hu, R., Sun, L., Zhu, X., Blumwald, E., Payton, P. and Zhang, H. (2013). Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE. 8: e64190.
Lemes, J.G., Kisiala, A., Morrison, E., Aoki, M., Nogueira, A.P.O. and Neil Emery, R. (2019). Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris) by increasing plant cytokinin levels. Environmental and Experimental Botany. 162: 525–540.
Li, D., Mou, W., Xia, R., Li, L., Zawora, C., Ying, T. and Luo, Z. (2019). Integrated analysis of high-throughput sequencing data shows abscisic acid- responsive genes and miRNAs in strawberry receptacle fruit rip- ening. Horticulture Research. 6:26.
Liu, C.Y., Zhang, F., Zhang, D.J., Srivastava, A.K., Wu, Q.S., Zou, Y.N. (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports. 8:1978.
Lv, Z., Wang, S., Zhang, F., Chen, L., Hao, X., Pan, Q., Fu, X., Li, L., Sun, X. and Tang, K. (2016). Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant and Cell Physiology. 57(9):1961–1971.
Lyons, GH., Genc, Y., Soole, K., Stangoulis, J.C.R., Liu, F. and Graham, R.D. (2009). Selenium increases seed production in Brassica. Plant and Soil. 318:73–80.
Majlesy, A. and Gholinezhad, E. (2014). Phenotype and quality variation of forage maize (Zea mays L.) with potassium and micronutrient application under drought stress conditions. Research in Field Crops. 1(2): 44-55.
Mamnabi, S., Nasrollahzadeh, S., Ghassemi-Golezani, K. and Raei, Y. (2020). Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi Journal of Biological Sciences. 27(3): 797-804.
Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P. and Nguyen, H.T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology. 50:1260-1276.
Martin, P.A., Michelazzo, C., Torres-Ruiz, J.M., Flexas, J., Fernández, J.E., Sebastiani, L. and Diaz-Espejo, A. (2014). Regulation of photosynthe- sis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany. 65:3143–3156.
Mehmood, M., Khan, I., Chattha, M.U., Hussain, S., Ahmad, N., Aslam, M.T. and Hafeez, M.B. (2021). Thiourea application protects maize from drought stress by regulating growth and physiological traits. Pakistan Journal of Science. 73:355–363.
Michel, B.E. and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5): 914-916.
Mousavi, S.F. and Akhavan, S. (2008). Irrigation Principles. Kankash Press. Pp: 414.
Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C.I. and Therios, I. (2011). Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II function- ing of Arabidopsis thaliana leaves. Journal of Plant Growth Regulation. 65:315.
Mozafariyan, M., Pessarakli, M. and Saghafi, K. (2017). Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. Journal of Plant Nutrition. 40:139–144.
Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javai, A. and Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environ- ments. Biotechnology Advances. 32: 429–448.
Nawaz, F., Ashraf, M.Y., Ahmad, R. and Waraich, E.A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research. 151:284–293
Nazar, R., Umar, S., Khan, N.A. and Sareer, O. (2015). Salicylic acid supplemen- tation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany. 98:84–94
Niu, X., Song, L., Xiao, Y. and Ge, W. (2018). Drought-tolerant plant growth- promoting rhizobacteria associated with foxtail millet in a semi- arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology. 8: 2580.
Noreen, S., Athar, H. and Ashraf, M. (2013). Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pakistan Journal of Botany. 45: 1873–1881
Oliver, M.J., Farrant, J.M., Hilhorst, H.W.M., Mundree, S., Williams, B. and Bewley, J.D. (2020). Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology. 71: 435-460.
Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U. and Dolferus, R. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes. 12: 1742.
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.S.P. (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany. 64(2):445–458.
Peleg, Z., Reguera, M., Tumimbang, E., Walia, H. and Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal. 9: 747–758.
Pham, J., Liu, J., Bennett, M.H., Mansfield, J.W. and Desikan, R. (2012). Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytologist. 194(1):168–180.
Pirasteh-Anosheh, H. and Emam, Y. (2019). The role of plant growth regulators in enhancing crop yield under saline conditions: from theory to practice. Iranian Journal of Crop Sciencs. 21(3): 188-209.
Qaseem, M.F., Qureshi, R. and Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports. 9: 55-69.
Quiroga, G., Erice, G., Aroca, R., Chaumont, F. and Ruiz-Lozano, J.M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in Plant Science. 8:1056.
Richard, G.A., Pereira, L., Raes, D. and Smith, M. (1998). Crop evapotranspiration Guidelines for computing crop water requirements. Food and Agriculture organization of the United Nations, Rome, Italy, 304p.
Rodriguez, R.J., White Jr., J.F., Arnold, A.E. and Redman, A.R.A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist. 182(2):314–330.
Ross, A.B., Zangger, A. and Guiraud, S.P. (2014). Cereal foods are the major source of betaine in the Western diet–analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chemistry. 145:859–865
Rouhani, L., Zamani, M.J. and Fotoot, R. (2015). Variation in pore size and density of barley genotypes under drought stress and normal conditions. Journal of Plant Research. 28(5): 986-994.
Rout, G.R. and Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science. 3:1–24.
Ruggiero, A., Punzo, P., Landi, S., Costa, A., Van Oosten, M.J. and Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. Horticulturae. 3(2): 31.
Roy, S. (2016). Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling and Behavior. 11(1):e1117723.
Sabagh, I.E., Abdelaal, K., Omra, R., Hafez, Y.M. and Esmail, S. (2018). Anatomical, biochemical and physiological changes in some Egyptian wheat cultivars inoculated with Puccinia graminis f.Sp. Tritici. Fresenius Environmental Bulletin Fresenius. 27:296–305.
Saeedipour, S. (2013). Relationship of grain yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. Proceedings of the National Academy of Sciences, India Section B. 83: 311–315.
Sarmadnia, Gh. (1993). The importance of environmental stresses in agriculture. Collection of key papers of the First Iranian Congress of Agriculture and Plant Breeding, Faculty of Agriculture. University of Tehran. Pp: 169-157.
Sarshad, A., Talei, D., Torabi, M., Rafiei, F. and Nejatkhah, P. (2020). Effect of irrigation cessation at different growth stages on yield, yield components and grain quality of different grain sorghum cultivars. Crop Physiology. 12(1): 61-75.
Shahzad, B., Rehman, A., Tanveer, M., Wang, L., Park, S.K. and Ali, A. (2021). Salt Stress in Brassica: Effects, tolerance mechanisms, and management. Journal of Plant Growth Regulation. 41(4):1-15.
Sharma, L., Dalal, M., Verma, R.K., Kumar, S.V., Yadav, S.K., Pushkar, S. and Chinnusamy, V. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environmental and Experimental Botany. 150: 9–24
Sinaki, M.J., Majidi Heravan, E., Shiranirad, H., Noormohammadi, G. and Zarei, G.H. (2007). The effects of water deficit during growth stages of canola (Brassica napus L.). American-Eurasin Journal of Agricultural and Environmental Science. 2:417-422.
Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science.15:89–97.
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science. 11:556972. doi: 10.3389/fpls.2020.556972
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences. 63(3):459–62.
Tanveer, M., Shahzad, B., Sharma, A., Biju, S. and Bhardwaj, R. (2018). 24-Epi- brassinolide; an active brassinolide and its role in salt stress tol- erance in plants: a review. Plant Physiology and Biochemistry. 130: 69–79.
Thompson, A.J., Andrews, J., Mulholland, B.J., McKee, J.M.T., Hilton, H.W., Horridge, J.S., Farquhar, G.D., Smeeton, R.C., Smillie, I.R.A., Black, C.R. and et al. (2007). Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiology. 143: 1905–1917.
Timachi, F., Armin, M., Jamimoeini, M. and Abhari, A. (2020). Physiological response of cumin to times and type of stress modulator in rain-fed and irrigated conditions. Russian Journal of Plant Physiology. 67(6): 1163–1172
Topp, G.G. and Davies, J.L. (1985). Time domain reflectometry (TDR) and its application to irrigation scheduling. Advances in Irrigation. 3: 107-127.
Torres, C.A., Sepúlveda, G. and Kahlaoui, B. (2017). Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Frontiers in Plant Science. 8:2129
Trabelsi, L., Gargouri, K., Ben Hassena, A., Mbadra, C. and Gargouri, R. (2019). Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agricultural Water Management. 213: 749–59.
Ullah, A., Mushtaq, H., Fahad, S., Shah, A. and Chaudhary, H.J. (2017). Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology. 86: 119–127
Ullah, A., Sun, H., Yang, X. and Zhang, X. (2018). A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen spe- cies. Physiologia Plantarum. 162:439–454
Urban, J., Ingwers, M., McGuire, M.A. and Teskey, R.O. (2017). Stomatal con- ductance increases with rising temperature. Plant Signaling & Behavior. 12:e1356534
Vahdi, N. and Gholinezhad, E. (2016). Evaluation of drought tolerance of some soybean cultivars. Journal of Water Research in Agriculture. 29(1): 1-9.
Valluru, R., Davies, W.J., Reynolds, M.P. and Dodd, I.C. (2016). Foliar absci- sic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Frontiers in Plant Science. 7:461
Wang, H., Wang, H., Shao, H. and Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science. 7:67.
Wani, S.H., Singh, N.B., Haribhushan, A. and Mir, J.I. (2013). Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Current Genomics. 14(3):157–165.
Weisany, W., Sohrabi, Y., Heidari, G. and Ghassemi-Golezani, K. (2018). Effects of mycorrhiza fungi species application on growth and yield of chickpea (Cicer arietinum L.) under drought stress. Environmental Stresses in Crop Sciences. 12:507–524.
Xiang, J., Chen, X., Hu, W., Xiang, Y., Yan, M. and Wang, J. (2018). Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Reports. 37(11):1585–1595.
Xue, J., Yu, Y., Bai, Y., Wang, L. and Wu, Y. (2015). Marine oil-degrading micro- organisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Current Microbiology. 71:220–228
Yang, A., Akhtar, S.S., Amjad, M., Iqbal, S. and Jacobsen, S.E. (2016a). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science. 202: 445–453.
Yang, Z., Liu, J., Tischer, S.V., Christmann, A., Windisch, W., Schnyder, H. and Grill, E. (2016b). Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 113: 6791–6796.
Yu, L., Zhao, X., Gao, X. and Siddique, K.H.M. (2020). Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management. 228:105906.
Zali, H., Hasanloo, T., Sofalian, O., Asghari, A. and Zeinalabedini, M. (2016). Drought stress effect on physiological parameter and amino acids accumulations in canola. Journal of Crop Breeding. 8(18): 191-203.
Zardak, S.G., Dehnavi, M.M., Salehi, A. and Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere. 6: 31–38.
Zhang, Y., Zhu, J., Khan, M., Wang, Y., Xiao, W., Fang, T., Qu, J., Xiao, P., Li, C. and Liu, J. (2022). Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiology. https://doi.org/10.1093/plphys/kiac428
Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F. and Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water. 12:2127.
Zheljazkov, V.D., Astatkie, T. and Jeliazkova, E. (2013). Effect of foliar appli- cation of methyl jasmonate and extracts of juniper and sagebrush on essential oil yield and composition of ‘Native’spearmint. HortScience. 48: 462–465
Zhou, Y., He, R., Guo, Y., Liu, K., Huang, G., Peng, C. and Duan, L. (2019). A novel ABA functional analogue B2 enhances drought tolerance in wheat. Scientific Reports. 9:2887
Zivcak, M., Kalaji, H.M., Shao, H.B., Olsovska, K. and Brestic, M. (2014). Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. Journal of Photochemistry and Photobiology B, Biology. 137: 107–15.
Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology. 66(6):675–683.