Fuzzy (Soft) Quasi-Interior Ideals of Semirings
محورهای موضوعی : Transactions on Fuzzy Sets and SystemsArsham Borumand Saeid 1 , Marapureddy Murali Krishna Rao 2 , Rajendra Kumar Kona 3 , Noorbhasha Rafi 4
1 - Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
2 - Department of Mathematics, Sankethika Institute of Tech. and Management, Visakhapatnam-530 041, A.P., India.
3 - Department of Mathematics, GIS, GITAM (Deemed to be University), Visakhapatnam-530 045, A.P., India.
4 - Department of Mathematics, Bapatla Engineering College, Bapatla, A. P., India-522 101.
کلید واژه: Semiring, Regular semiring, Quasi-interior ideal, Fuzzy quasi-interior ideal, Fuzzy soft quasi-interior ideal,
چکیده مقاله :
In this paper, as a further generalization of fuzzy ideals, we introduce the notion of a fuzzy (soft) quasi-interior ideals of semirings and characterize regular semiring in terms of fuzzy (soft) quasi-interior ideals of semirings. We prove that (μ, A) is a fuzzy soft left quasi-interior ideal over a regular semiring M, if and only if (μ, A) is a fuzzy soft quasi-ideal over a semiring M, and study some of the properties.
In this paper, as a further generalization of fuzzy ideals, we introduce the notion of a fuzzy (soft) quasi-interior ideals of semirings and characterize regular semiring in terms of fuzzy (soft) quasi-interior ideals of semirings. We prove that (μ, A) is a fuzzy soft left quasi-interior ideal over a regular semiring M, if and only if (μ, A) is a fuzzy soft quasi-ideal over a semiring M, and study some of the properties.
[1] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. and Math. with Appli., 56 (2008), 2621-2628.
[2] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), 624-625.
[3] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 5 (1958), 321.
[4] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad., 34 (1958), 79-84.
[5] K. Iseki, Ideal theory of semiring, Proc. Japan Acad., 32 (1956), 554-559.
[6] K. Iseki, Ideal in semirings, Proc. Japan Acad., 34 (1958), 29-31.
[7] N. Kuroki, On fuzzy semigroups, Information Sciences, 53(3) (1991), 203-236.
[8] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad., 45 (1969), 710-712.
[9] S. Lajos and F. A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad., 46 (1970), 505-507.
[10] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The J. of Fuzzy Math., 9(3) (2001), 589-602.
[11] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19-31.
[12] M. Murali Krishna Rao, Bi-Interior Ideals of Γ− semirings, Disc. Math. General Algebra and Appli., 38 (2018), 239-254.
[13] M. Murali Krishna Rao, A study of quasi-interior ideal of semiring, Bull. Int. Math. Virtual Inst, 2 (2019), 287-300.
[14] M. Murali Krishna Rao, Bi-quasi Ideals of Γ−semirings, Disc. Math. General Algebra and Appli., 38 (2018), 69-78.
[15] M. Murali Krishna Rao, Tri-Ideals Of Semirings, Bull. Int. Math. Virtual Inst., 10(1) (2020), 145-155.
[16] M. Murali Krishna Rao, Fuzzy Soft Bi-interior Ideals over Γ−semirings, Journal of Hyperstructures, 10(1) (2021), 47-62.
[17] M. Murali Krishna Rao, Tri-quasi Ideals of Γ−semirings, Disc. Math. General Algebra and Appli., 41 (2021), 33-44.
[18] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.