بررسی تاثیر نانوذرات نقره سنتزشده به روش احیاء شیمیایی بر فعالیت آنزیمهای سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز پلاسما در مدل موش صحرایی
محورهای موضوعی :
آسیب شناسی درمانگاهی دامپزشکی
الهام قویدل اقدم
1
,
محمد نریمانی راد
2
,
علیرضا لطفی
3
1 - مربی گروه شیمی، واحد ایلخچی، دانشگاه آزاد اسلامی، ایلخچی، ایران.
2 - استادیار گروه فیزیولوژی، واحد ایلخچی، دانشگاه آزاد اسلامی، ایلخچی، ایران.
3 - گروه فیزیولوژی، واحد ایلخچی، دانشگاه آزاد اسلامی، ایلخچی، ایران.
تاریخ دریافت : 1394/10/30
تاریخ پذیرش : 1395/03/05
تاریخ انتشار : 1395/03/01
کلید واژه:
آنزیم های آنتی اکسیدان,
تنش اکسیداتیو,
نانوذرات نقره,
روش احیای شیمیایی,
چکیده مقاله :
چکیده با وجود امکان سنتز نانوذرات نقره به صورت "سیترات پوش" به روش احیاء شیمیایی و مشخص بودن تاثیرات اکسیداتیو نانوذرات نقره، بررسی اثرات اکسیداتیو این نوع از نانوذرات، ضروری به نظر می رسد. هدف از این، مطالعه مشاهده تاثیر نانوذرات نقره سنتزشده به روش احیاء شیمیایی بر سطح فعالیت آنزیم های آنتی اکسیدان سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز خون در موش صحرایی بود. سنتز نانو ذرات نقره به روش احیاء شیمیایی با مخلوط آب مقطر و سدیم بوروهیدرات و اضافه نمودن نیترات نقره، سپس افزودن تری سدیم سیترات به محلول به دست آمده، صورت پذیرفت. مطالعه با استفاده از 40 سر موش صحرایی نر ویستار در چهار گروه آزمایشی شامل گروه های شاهد، دارونما و گروه های تیمار با نانوذرات نقره با دز های 100 و 200 میلی گرم بر کیلوگرم وزن بدن انجام شد. گروه های تیمار با نانوذرات نقره به ترتیب دزهای 100 و 200 میلی گرم بر کیلوگرم محلول نانوذرات نقره را در روزهای اول و هفتم آزمایش (دو بار) به صورت داخل صفاقی دریافت کردند. تزریق نانو ذرات نقره در غلظت های 100 و 200 میلی گرم بر کیلوگرم وزن بدن، باعث کاهش معنی دار فعالیت آنزیم های سوپراکسید دیسموتاز (SOD) و گلوتاتیون پراکسیداز (GPx) خون گردید، به طوری که این کاهش در دز 200 میلی گرم بارزتر بود (01/0p<). همچنین، تاثیر اکسیداتیوی تزریق غلظت 200 میلی گرم بر کیلوگرم وزن بدن نانو ذرات نقره، منجر به بروز تلفات در حیوانات آزمایشی گردید. نتایج نشان داد که غلظت های 100 و 200 میلی گرم بر کیلوگرم وزن بدن نانو ذرات نقره سنتز شده به روش احیاء، باعث کاهش فعالیت آنزیم های آنتی اکسیدانی و در نهایت بروز تلفات میگردد.
چکیده انگلیسی:
Abstract With possibility of synthesis of silver nanoparticles in citrate-coated form and via chemical method, the aim of this study was synthesis of silver nanoparticles by chemical reduction method and investigation of the impact of nanoparticles on superoxide dismutase and glutathione peroxidase enzymes in an animal model. Silver nanoparticles were synthesized by chemical reduction with a mixture of distilled water and sodium borohydrate and adding silver nitrate and sodium citrate to the obtained solution. In vivo study was conducted using 40 adult male rats with an average weight of 100 grams. Animals were divided into four groups, as control, placebo, and treatment groups receiving silver nanoparticle solutions (100 and 200 mg/kg, respectively). The treatment groups received silver nanoparticle solutions (100 and 200 mg/kg) on the first and the seventh days of experiment intraperitoneally. Oxidative effects of injected high concentrations of silver nanoparticles (200 mg/kg) lead to mortality in the experimental animals. Infusion of silver nanoparticles at concentrations of 100 and 200 milligrams per kilogram of body weight decreased the activity of plasma superoxide dismutase (SOD) and glutathione peroxidase (GPx). This reduction was significantly higher (p<0.01) at the dose of 200 mg/kg. In conclusion, studies on animal models showed that the concentrations of 100 and 200 milligrams per kilogram of body weight of silver nanoparticles synthesized by chemical reduction method decreases the activity of antioxidant enzymes, eventually leading to mortality.
منابع و مأخذ:
منابع
· رضایی زراچی، س.، تقوی فومنی ، م.، رضوی ششده، س. و نگهداری ، م. (1392). اثر نانوذرات نقره بر سلولهای خونی در موش صحرایی نر. فصلنامه پژوهشی خون، دوره 10، شماره 2، صفحات: 153-147.
· محتشمی، م،. سپهری سرشت، س.، اصلی، ا.، برومند ،م. و قاسمی، ا. (۱۳۹۱). سنتز نانوذرات نقره با روش احیاء شیمیایی و روش بیوسنتز و بررسی اثرات ضد باکتری آنها. مجله علوم پزشکی رازی. دوره 19، شماره 103، صفحات: 74-65 .
· Adeyemi, O.S. and Faniyan, T.O. (2014). Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University of Medical Sciences, 9: 182-186.
· Ahmadi, F. and Hafsi Kurdestany, A. (2010). The Impact of Silver Nano Particles on Growth Performance, Lymphoid Organs and Oxidative Stress Indicators in Broiler Chicks. Global Veterinaria, 5(6): 366-370.
· Attia, A.A. (2014). Evaluation of the Testicular Alterations Induced By Silver Nanoparticles in Male Mice: Biochemical, Histological and Ultrastructural Studies. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(4): 1585-1589.
· Govindasamy, R. and Abdul Rahuman, A. (2012). Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). Journal of Environmental Sciences, 24(6): 1091-1098.
· Heidary, T., Shayesteh, F.K., Ghasemi, H., Zijoud, S.M.H. and Ranjbar, A. (2014). Effects of silver nanoparticle (Ag NP) on oxidative stress, liver function in rat: hepatotoxic or hepatoprotective? Issues in Biological Sciences and Pharmaceutical Research, 2(5): 040-044.
· Hritcu, L., Stefan, M., Ursu, L., Neagu, A., Mihasan, M., Tartau, L., et al. (2011). Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats. Central European Journal of Biology, 6: 497-509.
· Huang, C.C., Aronstam, R.S., Chen, D.R. and Huang, Y.W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology In Vitro, 24(1): 45-55.
· JHU; Joint Heath Safety and Environment/Animal Care and Use Committee. (2006). Use of Ether for Animal Anesthesia at Johns Hopkins University. Johns Hopkins University, USA. Online: http://web.jhu.edu/animalcare/policies/ether.html
· Lee, B., Duong, C.N., Cho, J., Lee, J., Kim, K., Seo, Y., et al. (2012). Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). Journal of Biomedicine and Biotechnology, ID: 262670.
· Leopold, N. and Lendl, B. (2003). A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry B, 107: 5723-5727.
· Martirosyan, A. and Schneider, Y.J. (2014). Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health, 11(6): 5720-5250.
· McShan D., Ray P.C. and Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22(1): 116-127.
· Moreno, I., Pichardo, S., Jos, A., Gomez-Amores, L., Mate, A. and Vazquez, C.M. (2005). Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon, 45: 395-402.
· Rai, M., Yadav, A. and Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27: 76 -83.
· Ranjbar, Z., Ataie, F. and Khajavi, H. (2014). Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat. Nanomedicine Journal, 1: 205-210.
· Wong, K.Y. (2012). Nanomedicine. Nanotechnology, Biology and Medicine, 8(6): 935-940.
· Zhan, C.D., Sindhu, R.K., Pang, A. and Vaziri, N.D. (2004). Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney: effect of antioxidant-rich diet. Journal of Hypertension, 22(10): 2025-2033.