Simultaneous Cross-linking and Antibacteial Finishing of Cationized Cotton by 3-chloro2-hydroxy propyl tri methyl ammonium chloride (Quat -188) and nano TiO2
محورهای موضوعی : Application of Textile Products in other Sciences and Disciplines
1 - Department of Art & Architectural, Yazd Branch, Islamic Azad University, Yazd, Iran
کلید واژه: Cotton, Antibacterial, nano TiO2, butane tetra carboxylic acid, anti wrinkle,
چکیده مقاله :
In this research, the simultaneous cross-linking and antibacterial finishing of bleached cotton and cationized cotton by 3-chloro2-hydroxy propyl tri methyl ammonium chloride (Quat -188) with butane tetra carboxylic acid (BTCA) and nano TiO2 was explored. Butane tetra carboxylic acid can be linked to the cellulosic chains by ionic and covalent bonds. To do this, different concentrations of nano TiO2 and BTCA were examined to obtain the highest cross-linking and antibacterial effects Various characteristics of samples such as antibacterial against different microorganisms like two gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), one gram-negative bacteria (Escherichia coli), and one fungus (Candida albicans), crease recovery angle, bending length, yellowness index, weight changes, water drop absorption time were investigated. The results showed that both the bleached cotton, and cationized cotton can be finished by the optimum concentration of nano TiO2 and BTCA for producing a cotton fabric with anti-wrinkle and antibacterial properties.
In this research, the simultaneous cross-linking and antibacterial finishing of bleached cotton and cationized cotton by 3-chloro2-hydroxy propyl tri methyl ammonium chloride (Quat -188) with butane tetra carboxylic acid (BTCA) and nano TiO2 was explored. Butane tetra carboxylic acid can be linked to the cellulosic chains by ionic and covalent bonds. To do this, different concentrations of nano TiO2 and BTCA were examined to obtain the highest cross-linking and antibacterial effects Various characteristics of samples such as antibacterial against different microorganisms like two gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), one gram-negative bacteria (Escherichia coli), and one fungus (Candida albicans), crease recovery angle, bending length, yellowness index, weight changes, water drop absorption time were investigated. The results showed that both the bleached cotton, and cationized cotton can be finished by the optimum concentration of nano TiO2 and BTCA for producing a cotton fabric with anti-wrinkle and antibacterial properties.
[1] Heywood D., Textile Finishing, First edition, Society of Dyers and Colourists, U K, 337–371, 2003.
[2] Hong K. H. and Sun G., Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives, Carbohydrate Polymers,71, 598-605, 2008.
[3] Kim Y. H., Nam C. W., Choi J. W. and Jang J., Durable Antimicrobial Treatment of Cotton Fabrics Using N-(2-Hydroxy) Propyl-3-trimethylammonium chitosan chloride and Poly carboxylic Acids, Journal of Applied polymer Science, 88, 1567-1572, 2003.
[4] Murata H., Koepsel R. R., Matyjaszewski K. and Russell A. J., Permanent , non – leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cell , Biomaterial, 28, 4870-4879, 2007.
[5] El–tahlawy K. F., El–bendary M. A., Elhendawy A. G. and Hudson S. M., The antimicrobial activity of cotton fabrics treated with different cross-linking agents and chitosan, Carbohydrate Polymers, 60, 421-430, 2005.
[6] Li Z. R. and Jiang W. C., Synthesis and application of novel aqueous anionic polyurethane as a durable press finishing agent of cotton fabrics, Textile Research Journal, 77(4), 227 – 232, 2007.
[7] Lee J. and Broughton R. M., Antimicrobial fibers created via poly carboxylic acid durable press finishing, Textile Research Journal, 77(8), 604-611, 2007.
[8] Ren X., Kocer H. B., Worley S.D., Broughton R.M. and Huang T.S., Rechargeable biocidal cellulose: Synthesis and application of 3-(2,3-dihydroxypropyl)–5,5–dimethy limidazolidine-2,4-dione, Carbohydrate polymers (2008), doi: 10.1016 /j. carbpol. 2008. 09. 012.
[9] Shenassa T., Khodarahmi F., Hemmatinejad N. and Montazer M., Antibacterial and Wrinkle Resistance Finishing of Cotton Fabric with Chitosan and Citric Acid, 6th National Conference on Iran Textile Engineering, Isfahan University of Technology,8-10 May 2007.
[10] Zhang Z., Chen L., Ji J., Huang Y. and Chen D., Antibacterial properties of cotton fabrics treated with chitosan, Textile Research Journal, 73(12), 1103-1106, 2003.
[11] Ye W., Leung M. F., Xin J., Kwong T. L., Lee D. K. L. and Li P., Novel core–shell particles with poly (n-butyl acrylate) cores and chitosan shells an antibacterial coating for textiles, Polymers, 46, 10538-10543, 2005.
[12] Sunada K., Watanabe T. and Hashimoto K., Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233, 2003.
[13] Liu H. L. and Yang T. C. K., Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by Zno and TiO2 activated with ultraviolet light, Process Biochemistry, 39, 475-481, 2003.
[14] Klaus P.K., Chaberny I. F., Massholder K., Stickler M., Benz V. W., Sonntag H. G. and Erdinger L., Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, 71-77, 2003.
[15] Taghipour F., Ultraviolet and ionizing radiation for microorganism inacvtivation, Water Research, 38, 3940-3948, 2004.
[16] Yao K.S., Ho D.Y., Yan J.J. and Tzeng K.C., Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surface & Coatings Technology, 201, 6886-6888, 2007.
[17] Zhao J., Krishna V. and Hua B., Moudgil B. and Koopman B., Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores, Journal of Photochemistry and Photobiology B: Biology, 94, 96-100, 2009.
[18] Zhang X., Su H., Zhao Y. and Tan T., Antimicrobial activities of hydrophilic polyurethane titanium dioxide complex film under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 199, 123-129, 2008.
[19] Rincon A.G. and Pulgarin C., Photocatalytical inactivation of E.coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Applied Catalysis B: Enviornmental, 44, 263-284, 2003.
[20] Pal A., Pehkonene S. O., Yu L. E. and Ray M. B., Photocatalytic inactivation of Gram–positive and Gram–negative bacteria using fluorescent light, Journal of Photochemistry and Photobiology A: Chemistry, 186, 335 -341, 2007.
[21] Montazer M. and Afjeh M.G., Simultaneous X-linking and antimicrobial finishing of cotton fabric, Journal of Applied Polymer Science, 103, 178-185, 2007.
[22] Hebeish A., Hashem M., Abdel-Rahman A. and El-Hilw Z. H., Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric, Journal of Applied Polymer science, 100, 2697- 2704, 2006.
[23] H. Wang, Y. Wu, B. Q. Xu, Preparation and characterization of nanosized anatase
TiO2 cuboids for photocatalysis, Applied Catalysis B, 59, 3-4, 139–146, 2005.
[24] Meilert K.T., Laub D. and Kiwi J., Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers, Journal of Molecular Catalysis A: Chemical, 237, 101-108, 2005.
[25] Jawetz, Melnick, & Adelberg's Medical Microbiology, 24e, McGraw-Hill, Australia, 2007.
[26] K. Y. Jung, S. B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene, Journal of Photochemistry and photobiology A: Chemistry, 127, 117-122, 1999.
[1] Heywood D., Textile Finishing, First edition, Society of Dyers and Colourists, U K, 337–371, 2003.
[2] Hong K. H. and Sun G., Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives, Carbohydrate Polymers,71, 598-605, 2008.
[3] Kim Y. H., Nam C. W., Choi J. W. and Jang J., Durable Antimicrobial Treatment of Cotton Fabrics Using N-(2-Hydroxy) Propyl-3-trimethylammonium chitosan chloride and Poly carboxylic Acids, Journal of Applied polymer Science, 88, 1567-1572, 2003.
[4] Murata H., Koepsel R. R., Matyjaszewski K. and Russell A. J., Permanent , non – leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cell , Biomaterial, 28, 4870-4879, 2007.
[5] El–tahlawy K. F., El–bendary M. A., Elhendawy A. G. and Hudson S. M., The antimicrobial activity of cotton fabrics treated with different cross-linking agents and chitosan, Carbohydrate Polymers, 60, 421-430, 2005.
[6] Li Z. R. and Jiang W. C., Synthesis and application of novel aqueous anionic polyurethane as a durable press finishing agent of cotton fabrics, Textile Research Journal, 77(4), 227 – 232, 2007.
[7] Lee J. and Broughton R. M., Antimicrobial fibers created via poly carboxylic acid durable press finishing, Textile Research Journal, 77(8), 604-611, 2007.
[8] Ren X., Kocer H. B., Worley S.D., Broughton R.M. and Huang T.S., Rechargeable biocidal cellulose: Synthesis and application of 3-(2,3-dihydroxypropyl)–5,5–dimethy limidazolidine-2,4-dione, Carbohydrate polymers (2008), doi: 10.1016 /j. carbpol. 2008. 09. 012.
[9] Shenassa T., Khodarahmi F., Hemmatinejad N. and Montazer M., Antibacterial and Wrinkle Resistance Finishing of Cotton Fabric with Chitosan and Citric Acid, 6th National Conference on Iran Textile Engineering, Isfahan University of Technology,8-10 May 2007.
[10] Zhang Z., Chen L., Ji J., Huang Y. and Chen D., Antibacterial properties of cotton fabrics treated with chitosan, Textile Research Journal, 73(12), 1103-1106, 2003.
[11] Ye W., Leung M. F., Xin J., Kwong T. L., Lee D. K. L. and Li P., Novel core–shell particles with poly (n-butyl acrylate) cores and chitosan shells an antibacterial coating for textiles, Polymers, 46, 10538-10543, 2005.
[12] Sunada K., Watanabe T. and Hashimoto K., Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233, 2003.
[13] Liu H. L. and Yang T. C. K., Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by Zno and TiO2 activated with ultraviolet light, Process Biochemistry, 39, 475-481, 2003.
[14] Klaus P.K., Chaberny I. F., Massholder K., Stickler M., Benz V. W., Sonntag H. G. and Erdinger L., Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, 71-77, 2003.
[15] Taghipour F., Ultraviolet and ionizing radiation for microorganism inacvtivation, Water Research, 38, 3940-3948, 2004.
[16] Yao K.S., Ho D.Y., Yan J.J. and Tzeng K.C., Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surface & Coatings Technology, 201, 6886-6888, 2007.
[17] Zhao J., Krishna V. and Hua B., Moudgil B. and Koopman B., Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores, Journal of Photochemistry and Photobiology B: Biology, 94, 96-100, 2009.
[18] Zhang X., Su H., Zhao Y. and Tan T., Antimicrobial activities of hydrophilic polyurethane titanium dioxide complex film under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 199, 123-129, 2008.
[19] Rincon A.G. and Pulgarin C., Photocatalytical inactivation of E.coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Applied Catalysis B: Enviornmental, 44, 263-284, 2003.
[20] Pal A., Pehkonene S. O., Yu L. E. and Ray M. B., Photocatalytic inactivation of Gram–positive and Gram–negative bacteria using fluorescent light, Journal of Photochemistry and Photobiology A: Chemistry, 186, 335 -341, 2007.
[21] Montazer M. and Afjeh M.G., Simultaneous X-linking and antimicrobial finishing of cotton fabric, Journal of Applied Polymer Science, 103, 178-185, 2007.
[22] Hebeish A., Hashem M., Abdel-Rahman A. and El-Hilw Z. H., Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric, Journal of Applied Polymer science, 100, 2697- 2704, 2006.
[23] H. Wang, Y. Wu, B. Q. Xu, Preparation and characterization of nanosized anatase
TiO2 cuboids for photocatalysis, Applied Catalysis B, 59, 3-4, 139–146, 2005.
[24] Meilert K.T., Laub D. and Kiwi J., Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers, Journal of Molecular Catalysis A: Chemical, 237, 101-108, 2005.
[25] Jawetz, Melnick, & Adelberg's Medical Microbiology, 24e, McGraw-Hill, Australia, 2007.
[26] K. Y. Jung, S. B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene, Journal of Photochemistry and photobiology A: Chemistry, 127, 117-122, 1999.
[1] Heywood D., Textile Finishing, First edition, Society of Dyers and Colourists, U K, 337–371, 2003.
[2] Hong K. H. and Sun G., Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives, Carbohydrate Polymers,71, 598-605, 2008.
[3] Kim Y. H., Nam C. W., Choi J. W. and Jang J., Durable Antimicrobial Treatment of Cotton Fabrics Using N-(2-Hydroxy) Propyl-3-trimethylammonium chitosan chloride and Poly carboxylic Acids, Journal of Applied polymer Science, 88, 1567-1572, 2003.
[4] Murata H., Koepsel R. R., Matyjaszewski K. and Russell A. J., Permanent , non – leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cell , Biomaterial, 28, 4870-4879, 2007.
[5] El–tahlawy K. F., El–bendary M. A., Elhendawy A. G. and Hudson S. M., The antimicrobial activity of cotton fabrics treated with different cross-linking agents and chitosan, Carbohydrate Polymers, 60, 421-430, 2005.
[6] Li Z. R. and Jiang W. C., Synthesis and application of novel aqueous anionic polyurethane as a durable press finishing agent of cotton fabrics, Textile Research Journal, 77(4), 227 – 232, 2007.
[7] Lee J. and Broughton R. M., Antimicrobial fibers created via poly carboxylic acid durable press finishing, Textile Research Journal, 77(8), 604-611, 2007.
[8] Ren X., Kocer H. B., Worley S.D., Broughton R.M. and Huang T.S., Rechargeable biocidal cellulose: Synthesis and application of 3-(2,3-dihydroxypropyl)–5,5–dimethy limidazolidine-2,4-dione, Carbohydrate polymers (2008), doi: 10.1016 /j. carbpol. 2008. 09. 012.
[9] Shenassa T., Khodarahmi F., Hemmatinejad N. and Montazer M., Antibacterial and Wrinkle Resistance Finishing of Cotton Fabric with Chitosan and Citric Acid, 6th National Conference on Iran Textile Engineering, Isfahan University of Technology,8-10 May 2007.
[10] Zhang Z., Chen L., Ji J., Huang Y. and Chen D., Antibacterial properties of cotton fabrics treated with chitosan, Textile Research Journal, 73(12), 1103-1106, 2003.
[11] Ye W., Leung M. F., Xin J., Kwong T. L., Lee D. K. L. and Li P., Novel core–shell particles with poly (n-butyl acrylate) cores and chitosan shells an antibacterial coating for textiles, Polymers, 46, 10538-10543, 2005.
[12] Sunada K., Watanabe T. and Hashimoto K., Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233, 2003.
[13] Liu H. L. and Yang T. C. K., Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by Zno and TiO2 activated with ultraviolet light, Process Biochemistry, 39, 475-481, 2003.
[14] Klaus P.K., Chaberny I. F., Massholder K., Stickler M., Benz V. W., Sonntag H. G. and Erdinger L., Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, 71-77, 2003.
[15] Taghipour F., Ultraviolet and ionizing radiation for microorganism inacvtivation, Water Research, 38, 3940-3948, 2004.
[16] Yao K.S., Ho D.Y., Yan J.J. and Tzeng K.C., Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surface & Coatings Technology, 201, 6886-6888, 2007.
[17] Zhao J., Krishna V. and Hua B., Moudgil B. and Koopman B., Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores, Journal of Photochemistry and Photobiology B: Biology, 94, 96-100, 2009.
[18] Zhang X., Su H., Zhao Y. and Tan T., Antimicrobial activities of hydrophilic polyurethane titanium dioxide complex film under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 199, 123-129, 2008.
[19] Rincon A.G. and Pulgarin C., Photocatalytical inactivation of E.coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Applied Catalysis B: Enviornmental, 44, 263-284, 2003.
[20] Pal A., Pehkonene S. O., Yu L. E. and Ray M. B., Photocatalytic inactivation of Gram–positive and Gram–negative bacteria using fluorescent light, Journal of Photochemistry and Photobiology A: Chemistry, 186, 335 -341, 2007.
[21] Montazer M. and Afjeh M.G., Simultaneous X-linking and antimicrobial finishing of cotton fabric, Journal of Applied Polymer Science, 103, 178-185, 2007.
[22] Hebeish A., Hashem M., Abdel-Rahman A. and El-Hilw Z. H., Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric, Journal of Applied Polymer science, 100, 2697- 2704, 2006.
[23] H. Wang, Y. Wu, B. Q. Xu, Preparation and characterization of nanosized anatase
TiO2 cuboids for photocatalysis, Applied Catalysis B, 59, 3-4, 139–146, 2005.
[24] Meilert K.T., Laub D. and Kiwi J., Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers, Journal of Molecular Catalysis A: Chemical, 237, 101-108, 2005.
[25] Jawetz, Melnick, & Adelberg's Medical Microbiology, 24e, McGraw-Hill, Australia, 2007.
[26] K. Y. Jung, S. B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene, Journal of Photochemistry and photobiology A: Chemistry, 127, 117-122, 1999.