مروری کوتاه بر تاثیر نانوذرات معدنی بر عملکرد سلولهای خورشیدی پلیمری P3HT/PCBM
محورهای موضوعی :
تحقیقات در علوم مهندسی سطح و نانو مواد
سیده لاله موسوی
1
1 - گروه فیزیک، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران
تاریخ دریافت : 1402/04/14
تاریخ پذیرش : 1402/06/18
تاریخ انتشار : 1402/06/30
کلید واژه:
سلول های خورشیدی,
پلیمر,
نانوذرات معدنی,
لایه فعال,
P3HT/PCBM,
چکیده مقاله :
سلول های فتوولتائیک آلی به دلیل کاربرد بالقوه آن در صفحات خورشیدی مسطح، قابل چاپ و انعطاف پذیر، به عنوان رقیب جدیدی برای سلول های خورشیدی مبتنی بر مواد معدنی ظاهر شده است. به طور خاص، استفاده از ساختار ناهمسان توده ای در لایه فعال سلول های فتوولتادئیک به افزایش قابل توجه بازده تبدیل توان در این نوع از سلول ها، منجر شده است. برای رسیدن به بازده بالا، مواد دهنده و گیرنده الکترون، با خواص ایده آل لازم هستند. در سال های اخیر ترکیبی از نانوذرات معدنی و پلیمر مزدوج در لایه فعال سلول خورشیدی به عنوان کاربرد بالقوه در توسعه قطعات فتوولتائیک کم هزینه شناسایی شده اند. تحقیقات اخیر مبنی بر تاثیر افزودن نانوذرات معدنی به پلیمر مزدوج ارزان و در دسترس P3HT/PCBM در این مقاله نقل شدهاند که میتوانند دستورالعملهایی را در طراحی سلولهای خورشیدی فتوولتائیک کم هزینه ارائه دهند. همه این مواد برای کمک به جذب بیشتر نور خورشید در منطقه وسیع تری از طیف خورشیدی علاوه بر افزایش سرعت انتقال بار در ساختار دستگاه، طراحی شده اند. این بررسی بر روی توسعه سلولهای خورشیدی ترکیبی پلیمری_ معدنی تمرکز دارد.
منابع و مأخذ:
C. Thompson and J.M. Fréchet, . "Polymer–fullerene composite solar cells." Angewandte chemie international edition , 1 (2008) 58.
Abu-Zahra and M. Algazzar, Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells. Journal of Solar Energy Engineering, 136 (2013) 021023.
Kim, SH. Cha, SC. Kim, M .Song, J .Lee, WS Shin, et al., Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications. ACS Nano, 4(2011) 3319.
Misra, BX. Fu, A. Plagge, SE. Morgan, POSS-nylon 6 nanocomposites: Influence of POSS structure on surface and bulk properties. Journal of Polymer Science Part B: Polymer Physics, 11(2009) 1088.
Sha, WCH. Choy, WC. Chew, "Theoretical Studies of Plasmonic Effects in Organic Solar Cells." Organic Solar Cells: Materials and Device Physics (2013) 177.
Xie, WCH. Choy, CCD. Wang, WEI. Sha, Charlie CD Wang, Wei EI Sha, and Dixon DS Fung. "Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers." Applied Physics Letters , 15 (2011).
Liao, CS. Tsao, TH. Lin, MH. Jao, CM Chuang et al., Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell with Enhanced Performance. ACS Nano, 6(2012) 1657.
Sun, E. Marx and N.C. Greenham, Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers. Nano Letters, 7(2003) 961.
Klingshirn, ZnO: Material, Physics and Applications. ChemPhysChem, 6(2007) 782.
Nagaraju, SH. Puttaiah, K .Wantala, B .Shahmoradi, Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene. Applied Water Science, 6(2020) 137.
SH Oh, SJ Heo, JS Yang, HJ Kim. "Effects of ZnO nanoparticles on P3HT: PCBM organic solar cells with DMF-modulated PEDOT: PSS buffer layers." ACS applied materials & interfaces ,22 (2013) 11530.
E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide a review. Solid-State Electronics, 1(1986) 7.
Wang, CH. Hsiao, SJ. Chang, KT. Lam, A CuO nanowire infrared photodetector. Sensors and Actuators A: Physical, 2(2011) 207.
Wanninayake, S. Gunashekar, S. Li, BC. Church, N. Abu-Zahra Abu-Zahra, Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semiconductor Science and Technology, 6(2015) 064004.
Salim, S. R. Bobbara, A. Oraby, and J. M. Nunzi. "Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices." Synthetic Metals , 252 (2019) 21.
Z .Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, F. Tan, et al, The application of SnS nanoparticles to bulk heterojunction solar cells. Journal of Alloys and Compounds, 1(2009) 203.
A. Zhang and S.Y. Cheng, Zhang, Shuai, and Shuying Cheng. "Thermally evaporated SnS: Cu thin films for solar cells." Micro & Nano Letters , 7 (2011) 559.
Manohari, S. Gowri, C. Dhanapandian, Manoharan, K. Santhosh Kumar, and T. Mahalingam. "Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis." Materials science in semiconductor processing, 17 (2014) 138.
Jamali-Sheini, , M. Cheraghizade, and R. Yousefi, SnS nanosheet films deposited via thermal evaporation: The effects of buffer layers on photovoltaic performance. Solar Energy Materials and Solar Cells, 154 (2016) 49.
Jamali-Sheini, , M. Cheraghizade, R. Yousefi, Electrochemically synthesis and optoelectronic properties of Pb- and Zn-doped nanostructured SnSe films. Applied Surface Science, 443 (2018) 345.
Mousavi, F. Jamali-Sheini, M. Sabaeian, R .Yousefi., Enhanced solar cell performance of P3HT:PCBM by SnS nanoparticles. Solar Energy, 199 (2020) 872.
KS .Kumar, . Manohari, C Lou, T Mahalingam, S. Dhanapandian, Influence of Cu dopant on the optical and electrical properties of spray deposited tin sulphide thin films. Vacuum, 128 (2016)) 226.
R. Bommireddy, C.S. Musalikunta, C. Uppala, S.H.Park, Influence of Cu doping on physical properties of sol-gel processed SnS thin films. Materials Science in Semiconductor Processing, 71 (2017) 139.
L. Mousavi, F. Jamali-Sheini, M. Sabaeian, R. Yousefi, Correlation of Physical Features and the Photovoltaic Performance of P3HT:PCBM Solar Cells by Cu-Doped SnS Nanoparticles. The Journal of Physical Chemistry C, 29(2021) 15841.
D Hu, C .Dall'.Agnese, X.F. Wang, G. Chen, M.Z. Li, et al., Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 357 (2018) 36.
L.Khairulaman, , C.C. Yap, and M.H. Hj Jumali, Improved performance of inverted type organic solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters, 283 (2021) 128827.
Cao and Y. Wang. "World scientific series in nanoscience and nanotechnology." Nanostructures and Nanomaterials Synthesis, Properties, and Applications (2011) 3551.
X .Chen, C. Zhao, L. Rothberg, M.K. Ng, Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Applied Physics Letters, 93 (2008).
Liu, S. Qu, X. Zhang, F. Tan, Z. Wang, Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles. Nanoscale research letters, 8 (2013) 88.
Marumoto, A. Kosuga, D. Liu, O Takeuchi, H Shigekawa, Dependence of the Device Performance of Polymer Solar Cells on the Insertion of Metal Nanoparticle Layers at the Electron-collecting Electrodes. Electrochemistry, 85 (2017) 272.
Kaçuş, Ş. Aydoğan, M. Biber, Ö. Metin, M .Sevim, The power conversion efficiency optimization of the solar cells by doping of (Au:Ag) nanoparticles into P3HT:PCBM active layer prepared with chlorobenzene and chloroform solvents. Materials Research Express, 9(2019) 095104.
Phetsang, S. Nootchanat, C. Lertvachirapaiboon, R. Ishikawa and et.al. "Enhancement of organic solar cell performance by incorporating gold quantum dots (AuQDs) on a plasmonic grating." Nanoscale Advances , 7 (2020) 2950.
M. Mkawi, Y. Al-Hadeethi, B. Arkook, E. Bekyarova. "Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT: PCBM Polymer Solar Cells." Materials , 6 (2023) 2218.
H. Oh, S.J. Heo, J.S. Yang, H.J. Kim, Effects of ZnO Nanoparticles on P3HT:PCBM Organic Solar Cells with DMF-Modulated PEDOT:PSS Buffer Layers. ACS Applied Materials & Interfaces, 22(2013). 11530.