طراحی و مدلسازی حسگر نوری-مکانیکی چند منظوره پلاسمونی با حساسیت بالا مبتنی بر شیارهای نازک فلزی
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیولی اله پورحسین باقری 1 , حامد سقائی 2
1 - گروه الکترونیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد ساری، ساری، ایران
2 - دانشگاه آزاد اسلامی واحد شهرکرد
کلید واژه: حساسیت بالا : شیارهای متقارن یا نامتقارن, پلاسمونیک, حسگر نوری مکانیکی,
چکیده مقاله :
در این مقاله، یک حسگر پلاسمونیکی با حساسیت بالا برای جذب مولکولی با استفاده از شیارهای متقارن و نامتقارن ارائه می شود که این شیارها درون فیلمهای نازک فلزی حکاکی شدهاند. ایجاد شیارهای بسیار کوچک با اندازههای زیر طولموجی (نانومتری) بر روی فیلم نازک فلزی منجر به افزایش چشمگیر حساسیت مرتبط با جذب مولکولی میشود. با تمرکز نور درون شیارها، شیفت پیک طولموج در زمان جذب نور بهبود مییابد. حساسیت در غشای نازک بیومولکولی زمانی که ساختار بدون شیار و در حد نانومتر است بهاندازه 3/1 مرتبه بهبود پیدا میکند. اما زمانی که درون همین ساختار، شیار حکاکی میشود، حساسیت بهاندازه 4/8 مرتبه بهبود پیدا میکند. عملکردهای حسگر برای ساختارهای پلاسمونیکی با شیارهای متقارن و نامتقارن مورد بررسی قرارگرفته و نشان داده میشود که حسگر پیشنهادی قادر به عملکرد آشکارسازی بیومولکولی بهصورت مالتی پلکس است.علاوه بر این یک آرایه حسگر با شیار نانو پلاسمونیکی نامتقارن، با حساسیت بالا را که برای آشکارسازی تغییرات ظریف در جذب فیلم دیالکتریک مطلوب است پیشنهاد میدهیم.
In this paper, a high-sensitivity plasmonic sensor for molecular absorption using symmetric and asymmetric grooves are engraved into thin metal films. The creation of very small grooves with sub-wavelength sizes (nanometers) on a thin metal film leads to a significant increase in the sensitivity associated with molecular absorption. By concentrating light within the grooves, the peak wavelength shift is improved. When the groove is engraved inside the structure, the sensitivity improves to 8.4 times more than the grooveless structure. The sensor functions for plasmonic structures with symmetric and asymmetric grooves have been investigated and it is shown that the proposed sensor is capable of performing biomolecular detection in multiplex form.
[1] S. Asgari, N. Granpayeh, (2017), Tunable plasmonically induced reflection in graphene-coupled side resonators and its application, Journal of Nanophotonics, 11( 2), pp 26012.
[2] S. Naghizade, H. Saghaei, (2020), Tunable graphene-on-insulator band-stop filter at the mid-infrared region, Optical and Quantum Electronics, 52(4), pp 224,.
[3] A. A. Tabrizi, H. Saghaei, M. A. Mehranpour, M. Jahangiri, (2021), Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with Gold nanospheres,” Plasmonics, 16, pp. 747–760,.
[4] F. Tavakoli, F. B. Zarrabi, H. Saghaei, (2019), Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region, Applied Optics, 58(20), pp 5404–5414,.
[5] F. Tavakoli, F. B. Zarrabi, H. Saghaei, (2019), Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region,” Applied Optics, 58(20), pp 5404–5414.
[6] M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, A. Mir, (2018), Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range, Applied optics, 57(31), pp 9447–9454,.
[7] A. Farmani, (2019), Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range, JOSA B, 36( 2), pp 401–407,.
[8] A. Alipour, A. Farmani, A. Mir, (2018), High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface, IEEE Sensors Journal, 18(17), pp 7047–7054,.
[9] M. Biabanifard, S. Asgari, S. Biabanifard, M. S. Abrishamian, (2019), Analytical design of tunable multi-band terahertz absorber composed of graphene disks, Optik, 182, pp 433–442.
[10] A. Dolatabady, S. Asgari, N. Granpayeh, (2017), Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sensors Journal, 18(2), pp 569–574.
[11] J.-C. Yang, J. Ji, J. M. Hogle, D. N. Larson, (2008), Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes, Nano letters, 8(9), pp 2718–2724,.
[12] A. De Leebeeck, L. K. S. Kumar, V. De Lange, D. Sinton, R. Gordon, A. G. Brolo, (2007), On-chip surface-based detection with nanohole arrays, Analytical Chemistry, 79(11), pp 4094–4100,.
[13] G. M. Hwang, L. Pang, E. H. Mullen, Y. Fainman, (2008), Plasmonic sensing of biological analytes through nanoholes, IEEE sensors journal, 8(12), pp 2074–2079,.
[14] A. A. Yanik et al., (2010), An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media, Nano letters, 10(12), pp 4962–4969.
[15] H. Im, J. N. Sutherland, J. A. Maynard, S.-H. Oh, (2012), Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics, Analytical chemistry, 84( 4), pp 1941–1947,.
[16] K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, P.-K. Wei, (2012), Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS nano, 6(4), pp 2931–2939,.
[17] K. Lee, M. Chih, X. Shi, K. Ueno, H. Misawa, P. Wei, (2012), Improving Surface Plasmon Detection in Gold Nanostructures Using a Multi‐Polarization Spectral Integration Method, Advanced Materials, 24(35), pp OP253–OP259.
[18] Y. Gao, Z. Xin, Q. Gan, X. Cheng, F. J. Bartoli, (2013), Plasmonic interferometers for label-free multiplexed sensing, Optics express, 21( 5), pp 5859–5871,.
[19] J. Feng et al., (2012), Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing, Nano letters, 12(2), pp 602–609.
[20] X. Li, Q. Tan, B. Bai, G. Jin, (2011), Non-spectroscopic refractometric nanosensor based on a tilted slit-groove plasmonic interferometer, Optics express, 9( 21), pp 20691–20703.
[21] O. Yavas, C. Kocabas, (2012), Plasmon interferometers for high-throughput sensing, Optics letters, 37(16), pp 3396–3398,.
[22] K. A. Tetz, L. Pang, Y. Fainman, (2006), High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance, Optics letters, 31(10), pp 1528–1530.
[23] Y. C. Jun, K. C. Y. Huang, M. L. Brongersma, (2011), Plasmonic beaming and active control over fluorescent emission, Nature communications, 2(1), pp 1–6.
[24] B. Lee, S. Kim, H. Kim, Y. Lim, (2010), The use of plasmonics in light beaming and focusing, Progress in Quantum Electronics, 34(2), pp. 47–87.
[25] Y. S. Hwang, J. Kim, K.-Y. Kim, (2014), An improved design formula for the plasmonic directional beaming of light, IEEE Photonics Technology Letters, 26( 20), pp 2051–2054,.
[26] F. I. Baida, D. Van Labeke, (2002), Light transmission by subwavelength annular aperture arrays in metallic films, Optics communications, 209 (1–3), pp 17–22,.
[27] Lin, D. Z., Chang, C. K., Chen, Y. C., Yang, D. L., Lin, M. W., Yeh, J. T., ... & Lee, C. K. (2006). Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings, Optics Express, 14(8), pp3503-3511.
[28] H. Nasari M. S. Abrishamian, (2013), Beam manipulating via an array of nanoslits modified by perpendicular cuts and bumps, Plasmonics, 8(4), pp 1675–1682.
[29] E. D. Palik, (1998), Handbook of optical constants of solids, vol. 3. Academic press.
[30] K.-Y. Kim J. Jung, (2017), Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models, Applied optics, 56(21), pp. 5838–5843,.
[31] J. Jung, (2018), Robust optimization of nanoslit array sensor based on extraordinary optical transmission, IEEE Sensors Journal, 18( 21), pp8720–8725,.
[32] S. Naghizade H. Saghaei, (2021), A Novel Design for an All-Optical Half Adder Using Linear Defects in Photonic Crystal Microstructure, Journal of Applied Research in Electrical Engineering, 1(1).
[33] S. Naghizade, H. Saghaei, (2021), A novel design of fast and compact all-optical full-adder using nonlinear resonant cavities, Optical and Quantum Electronics, 53(5), pp 262.
_||_