چابکی عامل ها در زنجیره تامین سازمان های آموزشی با استفاده از الگوریتم بهینه سازی ازدحام ذرات
محورهای موضوعی : مدیریت صنعتیAbbass Toloie Ashlaghi 1 , shahrzad tayaran 2 , Reza Radfar 3 , Alireza Pourebrahimi 4
1 - Professor of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - industrial management,management faculty,science and research branch Islamic Azad university
3 - Islamic Azad University, Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Islamic Azad University, Department of Management, Karaj Branch, Islamic Azad University, Tehran, Iran
کلید واژه: سازمان های آموزشی, زنجیره تامین, چابکی, الگوریتم بهینه سازی ازدحام ذرات,
چکیده مقاله :
سرعت فزاینده تغییرات فن آورانه، از یک سو، و تغییر ماهیت تقاضای مشتریان و تشدید رقابت بین سازمان ها، از سوی دیگر، باعث شده است که سازمان ها به شدت به دنبال کسب مزیت های رقابتی جدید برای برتری بر رقبا و تامین بهتر نیاز مشتریان باشند. حصول چنین اهدافی در سایه مفهوم جدیدی به نام چابکی سازمانی به دست می آید اما چابکی سازمان تحت تاثیر عامل های خود می باشند که در شرکت های خدماتی ، کارکنان تاثیر گذارترین عامل می باشند. در این پژوهش که دانشگاه علوم و تحقیقات به عنوان مطالعه موردی مطرح شده است کارکنان به سه دسته نرم ، خاطی و مقصور تقسیم بندی شده اند که عامل های مذکور تعیین کننده سه عنصر اصلی چابکی زنجیره تامین سازمان که عبارتند از محرک های چابکی، توانمندیهای چابکی و توانا سازهای چابکی می باشند. همچنین با استفاده از الگوریتم بهینه سازی ازدحام ذرات یک مدل هوشمند طراحی شده که تاثیرگذاری و تاثیر پذیری عوامل بر یکدیگر مورد سنجش قرار گرفته است. و پس از اجرای مدل در مطالعه موردی در نقطه Time=769 ، بهبودی سازمان در بهترین حالت ممکن می باشد.
The increasing speed of technological change, on the one hand, and the changing nature of customer demand and the intensification of competition among organizations, on the other hand, have led organizations to seek to take on new competitive advantages to outperform competitors and better meet customer needs. Achieving such goals comes in the context of a new concept called "organizational agility," but agility of the organization is influenced by its agents, which are the most influential factor in service companies. In this research, which the University of Science and Research has proposed as a case study, the employees are divided into three categories: Soft, Grievous, and Blind. These factors determine the three main elements of the agility of the supply chain organization: Agility drivers, agility abilities and agility capability. Also, using a particle swarm optimization algorithm, an intelligent model has been designed to measure the impact and impact of factors on each other. And after implementing the model in a case study at Time = 769, recovery is at best possible.
_||_
1- Ahmadi, Mahdi; Fekri, Roxana; Babayanpour, Marzieh and Fathiyan, Mohammad. (2016). Agility of supply chain after-sales service of heavy vehicles in Iran. Scientific Journal of Management Improvement, 10(31), 101-122.
2- Blome, C., Schoenherr, T., & Rexhausen, D. (2013). Antecedents and enablers of supply chain agility and its effect on performance: a dynamic capabilities perspective. International Journal of Production Research, 51(4), 1295-1318.
3- Chan, A. T., Ngai, E. W., & Moon, K. K. (2017). The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry. European Journal of Operational Research, 259(2), 486-499.
4- Charlene A. Y. (2011). Measuring agility as a performance outcome. Journal of Manufacturing Technology Management, 22(3), 384-404.
5- Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706-727.
6- Hogenboom, A., Ketter, W., Dalen, J., Kaymak, U., Collins, J., & Gupta, A. (2015). Adaptive Tactical Pricing in Multi‐Agent Supply Chain Markets Using Economic Regimes. Decision Sciences, 46(4), 791-818.
7- Khoshalhan, Farid and Kalantari, Taher. (2017). Presentation of a Fuzzy Cognitive Map Model of Factors - Supply Chain Supply Chain in Marine Logistics. Journal of Marine Science and Technology, 16.
8- Mansouri, Farzaneh; Abbas Nejad, Tayebeh and Askarpour, Hamid Reza. (2017). Agile supply chain design in terms of dependency on demand. Journal of New Research in Decision Making, 2(1), 179-206.
9- Martinez-Sanchez, A., & Lahoz-Leo, F. (2018). Supply chain agility: a mediator for absorptive capacity. Baltic Journal of Management, 13(10), 20-28.
10- Mirghafoori, S. H., Andalib, D., & Keshavarz, P. (2017). Developing green performance through supply chain agility in manufacturing industry: A case study approach. Corporate Social Responsibility and Environmental Management, 24(5), 368-381.
11- Rajabzadeh Qotri, Ali; Seyed Hosseini, Seyed Mohammad; Alborzi, Mahmoud; Razavi and Mustafa; Ramezani Ali. (2012). Designing a dynamic dynamic model of business agility in manufacturing organizations with dynamic systems approach Case study: commercial automotive companies. Human Resources Management Research, 2(1), 42-60.
12- Sharifi H., Zhang Z. (1999). A methodology for achieving agility in manufacturing organizations: An introduction"; International Journal of Production Economics, 62, 1999.
13- Tizro, Ali; Azar, Adel; Ahmadi, Reza and Rafiei, Majid. (2011). Supply chain agility modeling: (Case study: Zob Ahan Co). Journal of Industrial Management, 3(7), 17-36.