Evaluation of GFF and RBF Neural Network Models and Soil Moisture Accounting Algorithm for HEC-HMS Model in Continuous Semi-Distributed Rainfall-Runoff Simulation in Jarahi Basin
محورهای موضوعی : Hydrology and water resourcesنوید آذرپیشه 1 , علیرضا نیکبخت شهبازی 2 , حسین فتحیان 3
1 -
2 -
3 -
کلید واژه: Hampel test, PMI algorithm, Gargar station, Nash coefficient, الگوریتم PMI, ایستگاه گرگر, آزمون همپل, ضریب ناش- ساتکلایف,
چکیده مقاله :
Runoff estimation is effective way in utilization and allocation of water resources for various agricultural, drinking, hydraulic and environmental sectors. In this paper, continuous simulation of rainfall-runoff in the basin with two different models including HEC-HMS conceptual model and data-processing model (artificial neural networks) are considered to evaluate the ability and accuracy of these two models in estimating runoff. The continuous flow simulation was used to calculate soil moisture losses (SMA) in sub-basins. For calibration of the model, daily precipitation, flow, evapotranspiration data from 2001 to 2007 were used and for model accuracy period of 2008 to 2011 were used. The results showed that the HEC-HMS model, along with the SMA model, has a good ability to continuously simulations in dry and continuous periods in the basin. In order to select the input variables that affect the flow rate in artificial neural networks, a generalized feeder grid (GFF) and a radial base function grid (RBF), partial interpolation algorithm (PMI) was used. The results of using the PMI algorithm showed that the input variable influences the flow velocity at the Gargar hydrometric station, the current day flow rate at this station. The results showed that the GFF network has more efficiency and accuracy than the conceptual model of HEC-HMS and RBF network in continuous run-run run simulation in the basin. The Nash coefficient for HEC-HMS and GFF and RBF networks is 0.6, 0.6677 and 0.6676 respectively
برآورد صحیح رواناب در بهرهبرداری منابع آب برای بخشهای مختلف کشاورزی، شرب، برقابی و زیست محیطی موثر است. در این مقاله به شبیهسازی پیوسته بارش- رواناب در حوضه جراحی با دو مدل مختلف شامل مدل مفهومی HEC-HMS و مدل بر مبنای پردازش دادهها (شبکههای عصبی مصنوعی) پرداخته میشود تا توانایی و دقت این دو مدل در برآورد رواناب نیز ارزیابی گردد. جهت شبیهسازی پیوسته جریان از مدل تلفات احتسابکننده رطوبت خاک (SMA) در زیرحوضهها استفاده گردید. برای واسنجی مدل از آمار روزانه بارش، دبی جریان و تبخیر از سال 1380 تا 1386 و برای صحتسنجی مدل از سال 1387 تا 1390 استفاده شد. نتایج نشان داد که مدل HEC-HMS به همراه مدل تلفات SMA از قابلیت خوبی در شبیهسازی پیوسته بارش- رواناب در فصول خشک و تر متوالی در حوضه جراحی برخوردار میباشد. برای انتخاب متغیرهای ورودی موثر بر دبی جریان در شبکههای عصبی مصنوعی شامل شبکه پیشخور تعمیمیافته (GFF) و شبکه تابع پایه شعاعی (RBF) از الگوریتم اطلاعات متقابل جزیی (PMI) استفاده شد. نتایج بکارگیری الگوریتم PMI نشان میدهد که متغیر ورودی موثر بر دبی جریان در ایستگاه هیدرومتری گرگر، دبی جریان یک روز قبل در این ایستگاه میباشد. نتایج نشان میدهد که شبکه GFF از راندمان و دقت بیشتری نسبت به مدل مفهومی HEC-HMS و شبکه RBF در شبیهسازی پیوسته بارش- رواناب در حوضه جراحی برخوردار است؛ بطوری که ضریب ناش- ساتکلایف برای مدل HEC-HMS و شبکه GFF و RBF به ترتیب 6/0 ، 677/0 و676/0 است.
دستورانی، م. ت.، شریفی دارانی، ح.، طالبی، ع. و مقدمنیا، ع. (1390). کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود. مجله آب و فاضلاب، دوره 22، شماره4 ، ص125-114.
دهقانی، م.، مرید، س. و نوروزی، ع. ا. (1389). ارزیابی شبیهسازی رواناب حوزههای برفی با مدل شبیهسازی (SRM) و شبکه عصبی برای برآورد انرژی برقابی در مواجهه با کمبود آمار. نشریه تحقیقات منابع آب ایران، دوره6، شماره 3، ص 12-24.
اکبری، م.، رعنایی، ا.، میرزاخان، ح.، درگاهی، ع. و جرگه، م. ر. (1395). پیشبینی رواناب ناشی از ذوب برف با استفاده از مدل SRM و مقایسه با مدلهای شبکه عصبی ANN و ANFIS مطالعه موردی: حوضه آبریز سد کارده. نشریه آب و خاک دانشگاه فردوسی مشهد، دوره30، شماره6، ص1807-1794.
قربانی، م. ع.، ازانی، ع. و محمودی وانعلیا، س. (1394). مدلسازی بارش رواناب با استفاده از مدلهای هوشمند هیبریدی. تحقیقات منابع آب ایران، دوره11، شماره2، ص 150-146.
حقی زاده، ع.، محمدلو، م. و نوری، ف. (1394). شبیهسازی فرایند بارش- رواناب با استفاده از شبکة عصبی- مصنوعی و سیستم فازی عصبی تطبیقی و رگرسیون چندمتغیره (مطالعة موردی: حوضة آبخیز خرمآباد). مجله اکوهیدرولوژی، دوره 2، شماره2، ص233-224.
همتی، م.، شهنازی، م.، احمدی، ح. و سالارجزی، م. (1396). تعیین مناطق سیلخیز حوضه آبریز قرنقو با استفاده از مدل هیدرولوژیکی مادکلارک و .GIS نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، دوره7، شماره4، ص 80-65.
پژوهش، م.، طهماسبی، ط. و عبدالهی، خ. (1397). شبیهسازی رواناب و رسوب با استفاده از مدل WetSpa. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، دوره 8، شماره4، ص 46-30.
Abrahart, R., Kneale, P.E. and See, L.M. (2004). Neural networks for hydrological modeling. CRC Press. 320 pages.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, pp: 716–723.
Anusree, K. and Varghese, K. O. (2016). Streamflow prediction of Karuvannur river basin using ANFIS, ANN and MNLR models. Procedia Technology, 24, pp: 101-108.
Araghinejad, S. and Karamouz, M. (2005). Long-lead streamflow forecasting using artificial neural networks and fuzzy inference system. Iran Water Resources Research, 1(2), pp: 29-41.
Chang, T.K., Talei, A., Alaghmand, S. and Ooi, M.P.L. (2017). Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. Journal of Hydrology, 545, pp:100–108.
Cover, T.M. and Thomas, J.A. (1991). Elements of information theory. John Wiley & Sons, Inc., New York. 400 pages.
Davies, L. and Gather, U. (1993). The identification of multiple outliers. Journal of the American Statistical Association, 88(423), pp:782–792.
Hydroligic Engineering Center (HEC), (2000). HEC-HMS Technical Reference Manual. US Army Corps of Engineers Institute for Water Resources (USACE), Davis, Calif. http://www.hec.usace.army.mil/.
Iran Power and Water Resources Development Company (2006). Review Report of Probable Maximum Flood (PMF) Studies, Bakhtiari Dam and Power Plant Design, Iranian Water and Power Resources Development Company, 110 p.
Lee, S.C., Lin, H.T. and Yang, T.Y. (2010). Artificial neural network analysis for reliability prediction of regional runoff utilization. Environmental Monitoring and Assessment, 161(1–4), pp: 315–326.
May, R.J., Dandy, G.C., Maier, H.R. and Nixon, J.B. (2008). Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling and Software, 23(10–11), pp;1289–1299.
May, R.J., Maier, H.R., Dandy, G.C. and Fernando, T.M.K.G. (2008). Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Environmental Modelling & Software, 23(10), pp:1312-1326.
Miguélez, M., Puertas, J. and Rabuñal, J.R. (2009). Artificial neural networks in urban runoff forecast. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5517 LNCS (PART 1), pp:1192–1199.
Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models; part I: A discussion of principles. Journal of Hydrology, 10, pp: 282-290.
Pearson, R.K. (2002). Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology, 10(1), pp: 55–63.
Shannon C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp: 379–423.
Sharma, A. (2000). Seasonal to inter annual rainfall probabilistic forecasts for improved water supply management: part 1: A strategy for system predictor identification. Journal of Hydrology, 239, pp: 232–239.
Solomatine, D. P. and Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics, 10 (1), pp: 3-22.
Tan, Q. F., Lei, X. H., Wang, X., Wang, H., Wen, X., Ji, Y. and Kang, A. Q. (2018). An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology, 567, pp: 767-780.