Identifying the potential of areas prone to replacing wastewater to compensate for the drop in the level of underground water sources
محورهای موضوعی : Groundwaterوحید یزدانی 1 , محمد سلطانی اصل 2
1 -
2 -
کلید واژه: سیستم تحلیل سلسله مراتبی, دشت مشهد, Mashhad Plain, Hierarchical analysis system, Reservoir level drop, Wastewater replacement, افت سطح ایستابی, جایگزینی پساب,
چکیده مقاله :
One of the main strategies to combat water scarcity is the continuous use of water by the change in its quality in different sectors of consumption, thus reusing wastewater is an inevitable necessity. In this study, the groundwater quality parameters of Mashhad Plain were investigated spatially and temporally using normal kriging and point cokriging methods in GIS environment. In the following, by using the hierarchical analysis process of AHP, the areas prone to replacing treated industrial effluents in the Mashhad plain have been identified and prioritized. Based on the statistics and standards used, it was determined that only 12.5% of the total underground water of the plain is potable. Also, 70% of the total underground water in Mashhad plain is suitable for agriculture. AHP results showed that according to the opinions of experts and water specialists, the drop in water level and underground water quality of Mashhad plain had the highest weighting coefficient, and the distance from the treatment plant and the height difference of different areas compared to the treatment plant (topography) had the lowest weighting coefficient. Also, the areas that had the highest drop, the best water quality, the least distance, and lower height from the treatment plant, had the highest weighting factor, and naturally, the areas that had the lowest drop, the worst water quality, the greatest distance and height from the treatment plant, had the lowest weighting factor Had the areas that were identified as the priority had the highest drop in water level and terms of water quality, they had better quality than other areas of the plain, and since in the AHP method, the highest weighting factor was related to the drop in water level and the quality of underground water. Also, the highest amount of this coefficient was related to the areas that had the highest drop and the best water quality, so they were chosen as the priority areas for replacing treated wastewater. By replacing treated wastewater with water from agricultural wells and removing them from the exploitation circuit, the amount of withdrawal from the aquifer is reduced and its stored potential can be used in the future. Replacement due to the high depth of the saturated layer in the plain prevents the change of the aquifer quality. On the other hand, the hydraulic gradient of the aquifer decreases the slope of the water level and, as a result, the speed of the underground water flow decreases. By direct replacement (compensation) and removing the agricultural wells from the circuit, 100% of the replaced water with better quality is stored in the underground water table, and will be used in the future.
یکی از راهکارهای اصلی مبارزه با کمآبی، کاربرد زنجیرهای آب متناسب با تغییر کیفیت آن در بخشهای مختلف مصرف میباشد که بهدین ترتیب استفاده مجدد از پساب ضرورتی اجتنابناپذیر است. در این مطالعه پارامترهای کیفیت آب زیرزمینی دشت مشهد از نظر مکانی و زمانی با استفاده از روشهای کریجینگ معمولی و کوکریجینگ نقطهای در محیط GIS بررسی شدند. با استفاده از فرآیند تحلیل سلسه مراتبی AHP، مناطق مستعد جایگزینی پسابهای تولیدی تصفیه شده در دشت مشهد مشخص و اولویتبندی شد. براساس آمار و استانداردهای مورد استفاده مشخص گردید که ۵/۱۲ درصد از کل آبهای زیرزمینی دشت قابل شرب است. همچنین ۷۰ درصد از کل آبهای زیرزمینی دشت مشهد برای کشاورزی مطلوب تا متوسط است. نتایج AHP نشان داد که با توجه به نظرات کارشناسان و متخصصان آب، افت سطح آب و کیفیت آب زیرزمینی دشت مشهد بیشترین ضریب وزنی و فاصله از تصفیهخانه و اختلاف ارتفاع مناطق مختلف نسبت به تصفیهخانه (توپوگرافی) کمترین ضریب وزنی را داشتند. مناطقی که بیشترین افت، بهترین کیفیت آب، کمترین فاصله و ارتفاع کمتری نسبت به تصفیهخانه داشتند، بیشترین ضریب وزنی را داشتند. از آنجایی که در روش AHP بیشترین ضریب وزنی مربوط به افت سطح آب و کیفیت آب زیرزمینی بود و همچنین بیشترین میزان این ضریب مربوط به مناطقی بود که بیشترین افت و بهترین کیفیت آبی را دارا بودند، بنابراین به عنوان اولویت اول مناطق جایگزینی پساب تصفیه شده انتخاب شدند. با جایگزینی پساب تصفیه شده با آب چاههای کشاورزی و خارج نمودن آنها از مدار بهرهبرداری، میزان برداشت از آبخوان کاهش یافته و پتانسیل ذخیره شده آن میتواند در آینده مورد استفاده قرار گیرد.
بانژاد، ح.، یزدانی، و.، رحمانی، ع. ر.، مهاجری، س. و علیایی، ا. (1389). امکانسنجی استفاده از دانههای مورینگا پرگرینا در مقایسه با آلوم و پلیآلومنیوم کلراید در تصفیه فاضلاب. مجله سلامت و محیط، فصلنامه علمی پژوهشی انجمن علمی بهداشت محیط ایران، دوره 3، شماره 3، ص 260-251.
حسنیپاک، ع.ا. (1377). زمین آمار، انتشارات دانشگاه تهران، ص 182.
قدسیپور، ح. (1398). فرایند تحلیل سلسله مراتبی. مرکز نشر دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، ص 222.
منتظر، ع. ا.، زادباقر، ا. و حیدری، ن. (1388). توسعه مدل ارزیابی آب مجازی شبکههای آبیاری با استفاده از فرآیند تحلیل سلسله مراتبی. مجله آب و خاک، دوره 23، شماره 4، ص 86-77.
وکیلی، ع. (1375). سخنرانیهای کلیدی در گردهمایی اقتصاد آب. مجله آب و توسعه، شماره 15، ص 18-13.
یزدانی، و. (1388). ارزیابی عملکرد پودر دانههای برخی از گونههای درخت گز روغنی در مقایسه با آلوم و پلی آلومینیوم کلرید در تصفیه فاضلاب شهری. پایاننامه کارشناسی ارشد، رشته مهندسی آب، دانشگاه بوعلی سینا همدان.
یزدانی، و.، بانژاد، ح.، فاضلی، م. ا. و رحمانی، ع. ر. (1396). بررسی عملکرد پودر دانههای مورینگا اولیفرا در مقایسه با سولفات آلومینیوم و پلیآلومینیومکلراید در تصفیه آبهای آلوده. مجله علوم و تکنولوژی محیط زیست، دوره 19، شماره 4، ص 334-321.
یزدانی، و. و منصوریان، ح. (1393). پهنهبندی پتانسیل بهرهبرداری از منابع آب زیرزمینی با استفاده از دادههای کمی و کیفی آبخوان دشت نیشابور، فصلنامه علمی و پژوهشی مهندسی آبیاری و آب، دوره 4، شماره 15، ص 132- 118.
Allan, J.A. (1999). A convenient solution. The UNESCO Courier, February, pp: 29–31.
Ananda, j. and Herath, G. (2008). Multi-attribute preference modeling and regional land-use planning. Ecological Economics, 65 (2), pp: 325-335.
Bush, S.R. (2003). Using a simple GIS model to assess development patterns of small scale rural aquaculture in the wider environment. Aqua KE Government Developments, pp: 1201-1210.
Dapueto, G., Massa, F., Costa, S., Cimoli, L., Olivari, E., Chiantore, M., Federici, B. and Povero, P. (2015). A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean & Coastal Management, 116, pp: 64–77.
Ferreira, J.G., Falconer, L., Kittiwanich, J., Ross, L., Saurel, C., Wellmane, K., Zhuf, C.B. and Suvanachai, P. (2015). Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquaculture, 447, pp: 23–36.
Greene, R., Luther, J.E., Devillers, R. and Eddy, B. (2010). An approach to GIS-based multiple criteria decision analysis that integrates exploration and evaluation phases: Case study in a forest-dominated landscape. Forest Ecology and Management, 260 (12), pp: 2102–2114.
Hossain, M.S. and Gopal Das, N. (2015). GIS-based multi-criteria evaluation to land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Computers and Electronics in Agriculture, 70 (1), pp: 172–186
Kerr, S. and Lasenby, T.A. (2000). Rainbow trout stocking in inland lakes and streams: An annotated bibliography and literature review. Fisheries Journal, 30 (7), pp: 21-30.
Kharat, M.G., Kamble, S.J., Raut, R.D., Kamble, S.S. and Dhume, S.M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment, 2(2), pp: 1-16.
Mahida, U.N. (1981). Water pollution and disposal of wastewater on land. Tata McGrow-Hill Publishing Company limited. New Delhi, 323p.
Montazar, A. and Behbahani, S.M. (2007). Development of an optimized irrigation system selection model using analytical hierarchy process. Bio systems engine, 98 (2), pp: 155-165.
Pan, G.C., Gaard, D., Moss, K. and Heiner, T. (1993). A comparison between co-Kriging and ordinary Kriging; case study whit a polymetalic deposit; Mathematical Geology, 25 (3), pp: 377-398.
Saaty T.L. (2000). Fundamentals of decision making and priority theory, 2nd ed., RWS Publications, Pittsburgh, PA.
Silva, C., Ferreira, J.G., Bricker, S.B., DelValls, T.A., Martín-Díaz, M.L. and Yáñez, E. (2011). Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments. Aquaculture, 318 (3-4), pp: 444–457.
Sloane, M.B. (1994). New Mexico Aquaculture. New Mexico State University, Cooperative Extension Service.