Analysis of hydraulic flow changes under the influence of pipe age
محورهای موضوعی : Design of water networksوحید یزدانی 1 , سپیده یکه باش 2 , مازیار بهرامی 3
1 -
2 -
3 -
کلید واژه: Transmission Lines, Hydraulic flow, Hazen-Williams coefficient, Hydraulic drop, افت هیدرولیکی, خطوط انتقال, ضریب هیزن ویلیامز, هیدرولیک جریان,
چکیده مقاله :
The increasing population of cities and the development of industriousness in all countries for water supply has created a twisted problem that can solve only with the help of skilled experts and technicians. This study was completed on several transmission lines, including fiberglass pipes and polyethylene with 110 to 400 mm diameters. Based on the hydraulic analysis, it was found that in the fiberglass pipe transmission line, by increasing the coefficient c from 140 to 135 and from 135 to 130, the rate of increase is equal to 3.2 and 3.5 percent. It should be noted that by creating changes of 3.5 and 7.1 percent in the roughness coefficient values, the portion of the hydraulic drop has increased by 3.2 and 6.7 percent, in pipelines where the water flow rate is close to 1.5 meters per second, the sensitivity increases. According to the results, the increase in drop by changing the coefficient c from 135 to 130 and from 130 to 125 on average in all routes is about 6%. As time goes on and the pipes get old, the designed pressures in the nodes are removed, and to solve this problem, pumping stations should be used, which increases the operating costs. The fiberglass and polyethylene pipes results displayed that the effect of roughness coefficient on drop changes in fiberglass pipes is less than in polyethylene. The results showed that the flow velocity is the aspect influencing the drop changes due to the difference in the Hayes-Williams coefficient.
افزایش روز افزون جمعیت شهرها و پیشرفت صنایع در همه کشورها برای آبرسانی شهرها مسئلهی بسیار مهم و پیچیدهای به وجود آورده که حل آن تنها با کمک متخصصان و تکنسینهای کارآزموده امکانپذیر میباشد. مطالعه حاضر بر روی چندین خط انتقال که شامل: لولههای فایبرگلاس و لولههای پلیاتیلن با اقطار 110 الی 400 میلیمتر بود، صورت گرفت. براساس تحلیلهای هیدرولیک مشخص گردید که در خط انتقال لوله فایبرگلاس با تغییر ضریب C از 140 به 135 و از 135 به 130 میزان افزایش افت برابر 2/3 و 5/3 درصد میباشد. ایجاد تغییرات 5/3 و 1/7 درصد در مقادیر ضریب زبری میزان افت هیدرولیکی به ترتیب به میزان 2/3 و 7/6 درصد افزایش یافته است. در خطوط لوله که سرعت جریان آب نزدیک به 5/1 متر بر ثانیه میباشد، حساسیت این عدم قطعیت افزایش مییابد. براساس نتایج بدست آمده مقدار افزایش افت با تغییر ضریب C از 135 به 130 و از 130 به 125 به طور متوسط در تمام مسیرهای مورد بررسی، حدود 6 درصد میباشد. با گذشت زمان و کهنهشدن لولهها، فشارهای طراحی شده در گرههای برداشت تامین نخواهد شد که برای این امر باید از ایستگاههای پمپاژ استفاده نمود که هزینههای بهرهبرداری را افزایش میدهد. نتایج مربوط به لولههای فایبرگلاس و پلیاتیلن نشان داد که تاثیر ضریب زبری بر تغییرات افت در لولههای فایبر گلاس، کمتر از پلیاتیلن است. نتایج مشخص نمود که سرعت جریان عامل تاثیرگذار بر تغییرات افت ناشی از تغییر ضریب هیزن ویلیامز میباشد.
احمدآبادی، ر. و اکبرزاده، م. ر. (1386). فرازی بر مکانیک سیالات و هیدرولیک، انتشارات جهاد دانشگاهی واحد مشهد، چاپ دوم، 372ص.
ابوذری، م. و جعفرزاده، م. ر. (1391). بررسی عوامل مؤثر در حادثههای خط انتقال آب گیسور-گناباد. نشریه علمی و پژوهشی هیدرولیک، دوره 7، شماره 1، ص 12-1.
بازرگان، ج. و طالبیان، م. (1392). ارزیابی تغییرات ضریب زبری لوله چدن داکتایل در اثر گذشت زمان - مطالعه موردی خط انتقال آب SW به S5 . کنفرانس بینالمللی عمران، معماری و توسعه پایدار شهری، 26 تا 27 آذر 1392، تبریز، ایران.
دماوندی، م. د.، رحیمزاده، ح. و ریاسی، ع. (1392). بررسی اثر لوله پلیاتیلنی موضعی در سیستم انتقال آب با خط لوله فولادی بر روی پدیده ضربه قوچ. مهندسی مکانیک مدرس، دوره 13، شماره 10، ص 126-118.
گیوهچی، م. و بردستانی، ص. (1392). تخمین ضریب اصطکاک در لولهها با استفاده از سیستم تطبیقی استنتاج فازی- عصبی. آب و فاضلاب، دوره 24، شماره 2، ص 122-117.
مرادی سبزکوهی، ع. و حقیقی، ع. (1398). تحلیل اثر تنشهای هیدرولیکی بر عملکرد شبکههای توزیع آب با استفاده از تحلیل فاصله و رویکرد بهینهسازی، مجله آب و فاضلاب، دوره 30، شماره 3، ص 16-1.
Abdel-Monim, Y.K., Ead, S.A. and Shabayek, S.A. (2005). Effect of time on pipe roughness. Hydrotechnical Engineering: 17th Cornerstone Of A Sustainable Environment, August 17-19, Edmonton, Alberta, Canada, pp: 1-10.
Babayan, A., Kapelan, Z., Savic, D. and Walters, G. (2005). Least-cost Design of Water Distribution Networks under Demand Uncertainty. Journal of Water Resources Planning and Management, 131 (5), pp: 375-389.
Bargiela, A. and Hainsworth, G.D. (1989). Pressure and Flow Uncertainty in Water system. Journal of Water Resources Planning and Management, 115 (2), pp: 212-229.
Bao, Y. and Mays, L.W. (1990). Model for Water Distribution System Reliability. Journal of Hydraulic Engineering, 116 (9), pp: 1119-1137.
Dini, M. and Tabesh, M. (2014). A New Method for Simultaneous Calibration of Demand Pattern and Hazen-Williams Coefficients in Water Distribution Systems. Journal of Water Resources Management, 28, pp: 2021–2034.
Echavez, G. (1997). Increase in losses coefficient with age for small diameter pipes. Journal of Hydraulic Engineering, 123 (2), pp: 157-159.
Frank, A., Pinter, G. and Lang, R.W. (2009). Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use. Polymer Testing, 28 (7), pp: 737–745.
Genic, S., Arandelovic, I., Kolendic, P., Jaric, M., Budimir, N. and Genic, V. (2011). A Review of Explicit Approximations of Colebrook’s Equation. FME Transactions, 39 (2), pp: 67-71.
Kang, D.S., Pasha, M.F.K. and Lansey, K. (2009). Approximate methods for uncertainty analysis of water distribution systems. Urban Water Journal, 6 (3), pp: 233–249.
Li, S. and Huai, W. (2016). United Formula for the Friction Factor in the Turbulent Region of Pipe Flow. PLOS ONE, 11 (5), pp: 1-10.
Revelli, R. and Ridolfi, L. (2002). Fuzzy approach for analysis of pipe network. Journal of Hydraulic Engineering, 128 (1), pp: 93–101.
Sadat-Maki, H. (2014). Reliability assessment of water distribution networks under uncertain nodal demand and pipe roughness. MSc Thesis, RMIT University, Australia.