The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
محورهای موضوعی : Irrigation and Drainageاباذر سلگی 1 , حیدر زارعی 2 , بهداد فلامرزی 3
1 - دانشجوی کارشناسی ارشد، گروه مهندسی منابع آب، دانشگاه شهید چمران اهواز، اهواز، ایران.
2 - استادیار، گروه هیدرولوژی، دانشگاه شهید چمران اهواز، اهواز، ایران.
3 - دانشجوی کارشناسی ارشد، گروه مهندسی منابع آب، دانشکده علوم آب، دانشگاه شهید چمران اهواز، ایران.
کلید واژه: Intelligent Models, Hybrid Wavelet Model - Neural Network, Adaptive Neuro Fuzzy Inference System, Monthly Precipitation Prediction, مدلهای هوشمند, مدل ترکیبی موجک, عصبی, سیستم استنتاج فازی- عصبی تطبیقی و پیشبینی بارش ماهانه,
چکیده مقاله :
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a modern and efficient method to analysis of signals and time series.In this study, wavelet analysis combined with artificial neural network and compared with fuzzy inference system-adaptive neural for forecasting rainfall in Vrayneh station in the Nahavand. For this purpose, the original time series using wavelet theory decomposed to multi time sub-signals, then these sub-signals as input data to the neural network was used to predict monthly flow.Obtained results showed that hybrid wavelet - neural network model outperformed than fuzzy inference system - adaptive neural model and cant used for prediction of short and long term precipitation. Also the results showed that the hybrid model of wavelet - neural network acts well in estimating the extent points.
پیش بینی بارش به دلیل ماهیت تصادفی آن در مکان و زمان همواره با مشکلات بسیاری مواجه بوده است و این عدم قطعیت از اعتبار بسیاری از مدل های پیش بینی می کاهد. امروزه شبکه های غیرخطی به عنوان یکی از سیستم های هوشمند در پیش بینی یک چنین پدیده های پیچیده ای بسیار مورد استفاده قرار می گیرند. یکی از روش هایی که در سال های اخیر در زمینه هیدرولوژی مورد توجه قرار گرفته است، استفاده از تبدیل موجک به عنوان روشی نوین و مؤثر در زمینه آنالیز سیگنال ها و سری های زمانی است. در پژوهش حاضر، تجزیه و تحلیل موجک به صورت ترکیب با شبکه عصبی مصنوعی و مقایسه با سیستم استنتاج فازی- عصبی تطبیقی برای پیش بینی بارش ایستگاه وراینه در شهرستان نهاوند انجام شد. برای این منظور، سری زمانی اصلی با استفاده از تئوری موجک به چندین زیرسیگنال زمانی تجزیه شد، پس از آن این زیرسیگنال ها به عنوان داده های ورودی به شبکه عصبی مصنوعی برای پیش بینی بارش ماهانه استفاده شد. نتایج به دست آمده نشان داد که مدل ترکیبی موجک- شبکه عصبی عملکرد بهتری نسبت به مدل سیستم استنتاج فازی- عصبی تطبیقی دارد و می تواند برای پیش بینی بارش کوتاه مدت و بلند مدت استفاده شود. همچنین نتایج نشان داد که مدل ترکیبی موجک- شبکه عصبی در برآورد نقاط حدی به خوبی عمل می کند.
طوفانی، پ.، مساعدی، ا. و فاخری فرد، ا. (1390). پیشبینی بارش با استفاده از نظریه موجک. نشریه آب و خاک (علوم و صنایع کشاورزی). (5)25:ص: 1226-1217.
کماسی، م. (1386). مدلسازی بارش- رواناب با استفاده از مدل ترکیبی موجک- شبکهعصبیمصنوعی. پایان نامه کارشناسی ارشد. دانشگاه تبریز.ص:78-87.
عبقری، ه. (1387). بررسی روشهای پیشبینی هوشمند مبتنی بر شبکههای عصبی موجکی و مدلهای خود همبستگی دبی ماهانه رودخانه. پایانه نامه دکتری آبخیزداری- منابع آب. دانشگاه تهران.ص. 56.
عراقی نژاد، ش. و کارآموز، م. (1384). پیشبینی بلند مدت رواناب با استفاده از شبکههای عصبی مصنوعی و سیستم استنتاجفازی. تحقیقات منابع آب ایران. سال یکم شماره2. ص41-29.
نورانی، و. کینژاد، م. و ملکانی، ل. (1388). استفاده از سیستم فازی– عصبی تطبیقی در مدلسازی بارش- رواناب. نشریه مهندسی عمران و محیط زیست. (4)39 .ص:81-75.
Asadi, S., Shahrabi, J., Abbaszadeh, P. and Tabanmehr, S. (2013). A New Hybrid Artificial Neural Networks for Rainfall–Runoff Process Modeling. Neurocomputing: pp: 05-23.
Fofola-Georgiou. and Kumar, E. (1995). Wavelet in geophysiscs. Academic New York.
Jang, J. S. R., Sun, C. T. and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall International.New Jersey.
Kişi, Ö. (2009). Evolutionary fuzzy models for river suspended sediment concentration estimation. Journal of Hydrology 372(1–4), pp: 68-79.
Mallat, S. G. (1998). A wavelet tour of signal processing, San Diego.
Nayak, P. C., Sudheer, K. P., Rangan, D. M. and Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291(1–2): pp: 52-66.
Nourani, V., Alami, M. T. and Aminfar, M. H. (2009). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence 22, 3, pp: 466-472.
Nourani, V., Komasi, M. and Mano, A. (2009). A Multivariate ANN-Wavelet Approachfor Rainfall–Runoff Modeling. Water Resour Manage 23, pp: 2877–2894.
Nourani, V., Kisi, Ö. and Komasi, M. (2011). Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology 402, pp: 41–59.
Nourani, V and Komasi, M. (2013). A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process. Journal of Hydrology 490, pp: 41-55.
Nourani, V and Parhizkar, M. (2013). Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling. Journal of Hydroinformatics 15, 3, pp: 829-848.
Riad, S., J. Mania., L. Bouchaou and Najjar, Y. (2004). Rainfall-runoff model usingan artificial neural network approach. Mathematical and Computer Modelling 40(7–8), pp: 839-846.
Ross, T. J. (1995). Fuzzy logic with engineering application. McGraw Hill Inc., USA.
Talei, A., Chua, L. H. C. and Wong, T. S. W. (2010). Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling. Journal of Hydrology 391(3–4), pp: 248-262.