رتبه بندی نواحی مناطق 7 شهرداری تهران از نظر سطح برخورداری و کیفیت زندگی
محورهای موضوعی : مقالات تحلیلی جغرافیایی و محيطيعلی ابراهیمی 1 , مهرداد رمضانی پور 2 , کیا بزرگمهر 3 , لیلا ابراهیمی 4
1 - دانشجوی دکتری جغرافیا و برنامه ریزی شهری، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
2 - استادیار گروه جغرافیا، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
3 - استادیار گروه جغرافیا، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
4 - استادیار گروه جغرافیا، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
کلید واژه: کیفیت زندگی, سلسله مراتبی فازی, تاپسیس, واسپاس, منطقه 7 شهرداری تهران,
چکیده مقاله :
برخورداری از کیفیت زندگی مطلوب حق همهی شهروندان است. از آنجایی که حد آسـایش و رفـاه یک فرد با حداکثر شاخصهای کیفیت زندگی حاصل میشود، لذا امروزه کیفیـت زنـدگی بسـیار مـورد توجه مدیران و برنامهریزان شهری قرار گرفته است. هدف از این پژوهش رتبه بندی نواحی مناطق 7 شهرداری تهران از نظر سطح برخورداری و کیفیت زندگی می باشد. براســاس شــاخص های مدنظــر پژوهــش (بهرهوری، کیفیت زندگی، زیرساخت ها، پایداری محیطی، عدالت و مشارکت اجتماعی، حکمرانی و قانونگذاری شهری) داده هایــی از طریــق روش های میدانــی و ابــزار پرسش نامه ای در قالــب طیــف 5 درجـه ای لیکـرت جمـع آوری گردیـد. ایــن داده هــا پــس از میانگین گیــری در نرم افــزار آمــاری SPSS جهــت مقایســه زوجــی هــر یــک از معیارهــا و مؤلفه هــای شــاخص های کیفیــت زندگــی، پــس از اخـذ نظـر 50 خبره و کارشناس مربوطـه بـا اسـتفاده از مـدل وزندهـی فراینـد تحلیـل سلسـله مراتبـی فازی، وزن دهــی گردیده انــد، ســپس جهــت رتبه بنــدی نواحی و همچنیــن به منظــور تعییــن ســطح هــر یــک از آنهــا در شــاخص های پنجگانــه کیفیــت زندگــی از مــدل تصمیم گیــری واسپاس و تاپسیس اسـتفاده گردیـد و درنهایـت بـرای ارزیابـی توزیـع فضایـی کیفیـت زندگـی و رتبه بنـدی نهایـی نواحی، در محـدودة مـورد مطالعـه، از مـدل کپلند اسـتفاده شـده اسـت. تحلیل هر یک از شاخصهای موثربر کیفیت زندگی در نواحی منطقه 7 شهرداری تهران استفاده از مدلهای تصمیم گیری نشان داد که مجموع شاخصهای مورد استفاده با استفاده از مدل تاپسیس نشان داد که ترتیب اهمیت شامل سه، پنج، دو، چهار و یک می باشد. و این امر به نوعی نشان دهنده درجه تناسب و برخورداری اولیه و خام هر کدام از نواحی منطقه 5 شهرداری تهران از حیث شاخص کیفیت زندگی است.
Introduction
The serious problems caused by rapid urbanization have introduced the concept of smart city into the policy strategies of cities around the world. As a new urban development model, the ultimate goal of implementing smart city is to improve citizens' quality of life (QOL) by solving urban challenges and optimizing urban performance. The purpose of this study is to rank the five districts of Tehran's District 7 based on quality of life indicators and using multi-criteria decision-making methods. Barriers and problems of Tehran's District 7 Due to the lack of integration in this area, Shariati Street has divided District 7 into two parts, with citizens of the eastern part having less financial power than the western part. 48 percent of the fabric of District 7 is worn out, most of its area is located in the eastern part of Shariati Street, and given these basic barriers, there is a lack of smartization in these areas, which will cause problems for urban functions and services. Among the problems of the lack of smartization of District 7 in Tehran, traffic, worn out fabric, and lack of sports and green space per capita are among the problems of citizens.
Methodology
This research is of the “applied” type and its research method is of the “descriptive-analytical” type. The statistical population of the research includes all citizens over 15 years of age residing in the five districts of District 7 of Tehran Municipality. Currently, District 7 has a population of 324,000 and a population density of 19,587 people per square kilometer.
Based on the indicators considered in the study (productivity, quality of life, infrastructure, environmental sustainability, social justice and participation, governance and urban legislation), data were collected through field methods and a questionnaire tool in the form of a 5-point Likert scale. Some other required data, such as the theoretical-conceptual framework of the study, documents and records, and censuses were obtained through the library method. Face validity was used to examine the validity of the questionnaire. To determine the reliability of the questionnaire, Cronbach's alpha coefficient was used, which was found to be 0.854. These data were weighted after averaging in SPSS statistical software for pairwise comparison of each of the criteria and components of the quality of life indicators, after taking the opinions of 50 experts and experts using the fuzzy hierarchy analysis process weighting model, then the WASPS and TOPSIS decision-making models were used to rank the regions and also to determine the level of each of them in the five-fold quality of life indicators, and finally to evaluate the spatial distribution of quality.
Results
Scheffe is one of the multiple comparison methods of variance. Sig (significant difference) between regions in the six indicators is very different. The least difference between regions is in the environmental sustainability index and the greatest difference between regions is observed in the quality of life index. In general, significant differences are observed between the five regions in all indicators. In the productivity, infrastructure, quality of life, environmental sustainability indices, region one has the greatest difference with region five, in the participation and social justice index with region three, and in the governance and legislation index with region three and five. Region two has the greatest difference in all indicators in region three. Region three has the greatest difference in the productivity, infrastructure, quality of life, and environmental sustainability indices with region two, and in the social justice and governance index with region five. Region four has the greatest difference in all indicators with region two. Region 5 has the largest difference in productivity, infrastructure, quality of life, and environmental sustainability indicators with Region 1, and in the social justice and participation index with Region 3. The highest Levene Statistic belongs to the productivity index with 0.597 and the lowest belongs to the social justice and participation index with 0.055. The highest significant level belongs to the environmental sustainability and social justice and participation indices with 0.994 and the lowest belongs to the productivity index with 0.666.
The highest weight belongs to the sub-criterion of city administration with 0.174, followed by economic power with 0.163, and economic disparity and inequality with 0.160, respectively. The lowest weight belongs to the sub-criterions of public space with 0.051, air quality with 0.054, and waste management with 0.062, respectively. The highest weight belongs to quality of life with 0.203, followed by productivity with 0.195. And the lowest weight belongs to the index of social justice and participation with a weight of 0.133.
Conclusion
The present study used 6 main indicators with 21 sub-criteria and 63 measurement sub-components to evaluate and prioritize the quality of life index. The analysis of each of the indicators affecting the quality of life in the areas of District 7 of Tehran Municipality using decision-making models showed that the total of the indicators used using the TOPSIS model showed that the order of importance includes three, five, two, four and one. And this in a way indicates the degree of suitability and initial and raw enjoyment of each of the areas of District 5 of Tehran Municipality in terms of the quality of life index. Therefore, this result is consistent with the findings of Wang (2015), that new policies and data will change in each of the areas. In addition, the measurement of the indicators using the WASPS technique showed that the order of suitability of these indicators has differences and diversity in prioritization; So that the order of the first two priorities is proportional to the degree of quality of life, with criteria such as productivity, quality of life, infrastructure, equality and participation, environmental sustainability, and urban governance and legislation having a variety of prioritization.
Keywords: Quality of life, fuzzy hierarchy, TOPSIS, WASPAS, District 7 of Tehran Municipality
1. احمدی، اکبر، جهانگرد، اسفندیار،1399، رتبه بندی محلات شهر تهران از نظر سطح برخورداری و کیفیت زندگی با استفاده از Fuzzy TOPSIS، دوره 5، شماره 1، صص 148-127.
2. اشرفیان، علی،1404،سطح بندی توسعه یافتگی مناطق ۱۳ گانه شهر مشهد از نظر برخورداری از فضای سبز با استفاده از مدل Vikor-AHP،ششمین کنفرانس بین المللی پژوهش در علوم و مهندسی و سومین کنگره بین المللی عمران، معماری و شهرسازی آسیا
3. Braga,I.F.B. F.A.F. Ferreira, J.J.M. Ferreira, R.J.C. Correia, L.F. Pereira, P. F. Falc˜ ao, A DEMATEL, 2021, analysis of smart city determinants, Technol. Soc.pp 66 https://doi.org/10.1016/j.techsoc.2021.101687.
4. Camfield, L. S.M. Skevington, (2008), On subjective well-being and quality of life, J. Health Psychol. 13 (6), pp764–775, https://doi.org/10.1177/1359105308093860.
5. Liao, P. 2008, Parallels between objective indicators and subjective perceptions of quality of life: a study of metropolitan and county areas in Taiwan, Soc. Indicat. Res. 91 (1), pp99–114, https://doi.org/10.1007/s11205-008-9327-3.
6. Mccauley, C. B.A. Bremer, 1991, Subjective quality of life measures for evaluating medical intervention, Eval. Health Prof. 14 (4), pp 371, https://doi.org10.1177/016327879101404401.
7. Mu,R. M. Haershan, P. Wu, (2022) What organizational conditions, in combination, drive technology enactment in government-led smart city projects? Technol. Forecast. Soc. Change 174, https://doi.org/10.1016/j.techfore.2021.121220.
8. Stankovi´c, J. M. Dˇzuni´c, Z. ˇ Dˇzuni´c, S. Marinkovi´c, 2017, A multi-criteria evaluation of the European cities’ smart performance: economic, social and environmental aspects, Zb. Rad. Ekon. Fak. Rij. 35 (2), pp 519–550, https://doi.org/10.18045/ zbefri.2017.2.519.
9. Stiglitz,J.E. A.K. Sen, J.P. Fitoussi, N. Sarkozy, (2010).Mismeasuring Our Lives: Why GDP Doesn’t Add up, New Press, New York,
10. Yan, J. J. Liu, F.-M. .2018. Tseng, an evaluation system based on the self-organizing system framework of smart cities: a case study of smart transportation systems in China, Technol. Forecast. Soc. Change 153, pp 119371–119382, https://doi. org/10.1016/j.techfore.2018.07.009.
11. Yu, C. B. Ye, C. Lin, Y.J. Wu, 2020, Can smart city development promote residents’ emotional well-being? Evidence from China, IEEE Access 8, pp 116024–116040, https://doi.org/10.1109/access.2020.3004367.
12. Wang, M, Zhou, T, (2023), Does smart city implementation improve the subjective quality of life? Evidence from China, Technology in Society, Vol 72, 102161,https://doi.org/10.1016/j.techsoc.2022.102161.
13. Wang, M. T. Zhou, D. Wang, 2020, Tracking the evolution processes of smart cities in China by assessing performance and efficiency, Technol. Soc. 63, pp 12 https:/doi.org/10.1016/j.techsoc.2020.101353.
14. Woetzel,J. J. Remes, B. Boland, K. Lv, S. Sinha, G. Strube, J. Means, J. Law, A. Cadena, V.v.d. Tann, 2018. Smart Cities: Digital Solutions for a More Livable Future, https://www.mckinsey.com/business-functions/operations/our-insights/s mart-cities-digital solutions-for-a-more-livable-future. Pp51.
15. Chen, Z. Chan, I.C.C. 2022, Smart Cities and Quality of Life: A Quantitative Analysis of Citizens’ Support for Smart City Development, Information Technology & People, pp 45https://doi.org/10.1108/itp-07-2021-0577.
