فناوری ساخت افزایشی فلزی: مروری برکاربرد های زیست پزشکی
محورهای موضوعی : سایر
1 - گروه شیمی، واحد داراب، دانشگاه آزاد اسلامی، داراب، ایران. وگروه پژوهش های شیمی کاربردی، مرکز تحقیقات مهندسی شیمی، نفت و پلیمر، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: چاپ سهبعدی فلزی زیست تخریب پذیر, کاربردهای زیست پزشکی, چاپ سهبعدی فلزی زیست سازگار, ساخت افزایشی فلزی,
چکیده مقاله :
چاپ سه بعدی فلزی یک روش ساخت لایه لایه است که برای ساخت مدل سه بعدی ساختارهای پیچیده استفاده می شود. این فناوری دارای روش ها، مواد و تجهیزات متعدد است و بسیاری از هزینه های مرتبط با فرآیندهای سنتی، تجهیزات و مهارت های فلزکاری را کنار گذاشته تا با فرآیندی ساده تر و طراحی خلاقانه تر ساخت نمونه را انجام دهد. چاپ سه بعدی به عنوان ساخت افزایشی نیز شناخته شده است. ویژگیهای ساخت افزایشی عبارتند از سفارشیسازی چاپ، هزینه پایین برای تولید نمونه، ارتباط مستقیم با تصویربرداری سهبعدی و امکان تولید نمونه با موادی که زیست سازگار و زیست تخریبپذیر هستند. چاپ سهبعدی در پیشرفت علوم زیست پزشکی بسیار موثر بوده و برای طیف گسترده ای از کاربردهای پزشکی از جمله ساخت انواع ایمپلنت های زیست سازگار با پاسخ مکانیکی مناسب، داربست های زیست تخریب پذیر با سرعت تخریب مهندسی شده، ابزارهای جراحی پزشکی، ابزارهای دندانپزشکی و تجهیزات پزشکی مناسب هستند. این مقاله به بررسی چاپ سه بعدی فلزی، مواد اولیه و روش های مرتبط با آن و کاربردهای زیست پزشکی این فناوری می پردازد.
Metal 3D printing is a layer-by-layer fabrication method used to manufacture 3D models of complex structures. This technology has multiple methods, materials, and equipment that bypassing many of the costs associated with traditional processes, equipment, and skills for metal working, while creating free-form, near-net-shape 3D objects. This procedure is more accurately portrayed as additive manufacturing. Additive manufacturing’s attributes include print customization, low perunit cost for production, seamless interfacing with mainstream medical 3D imaging techniques, and feasibility to create freeform objects in materials that are biocompatible and biodegradable. The term 3D printing, in any case, is generally new and has been an active part of current developments in biomedical. Consequently, additive manufacturing is apposite for a wide range of biomedical applications including custom biocompatible implants that mimic the mechanical response of bone, biodegradable scaffolds with engineered degradation rate, medical surgical tools and biomedical instrumentation. This review surveys the materials, 3D printing methods and technologies, and biomedical applications of metal 3D printing.
1. S.F. Iftekar, A. Aabid, A. Amir, M. Baig, Polymers 15, 2519 (2023).
2. Y. Bozkurt, E. Karayel, J. Mater. Res. Tech. 14, 14 30 (2021).
3. A. Balamurugan, S. Rajeswari, G. Balossier, A.H.S Rebelo, J.M.F Ferreira, Mater. Corrosion 59, 855 (2008).
4. S. Pramanik, A.K. Agarwal, K.N. Rai, Trends Biomater. Artif. Organs 19, 15 (2005).
5. L. Rony, R. Lancigu, L. Hubert, Morphologie 103, 231 (2018).
6. J. Ni, H. Ling, S. Zhang, Z. Wang, Z. Peng, C. Benyshek, R. Zan, A.K. Miri, Z. Li, X. Zhang, J. Lee, K.J. Lee, H. J. Kim, P. Tebon, T. Hoffman, M.R. Dokmeci, N. Ashammakhi, X. Li, A. Khademhosseini, Mater. Today Bio. 3, 100024 (2019).
7. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. (Springer, New York, 2015).
8. Q. Chen, G.A. Thouas. Mater. Sci. Eng. 87, 1 (2015).
9. A. Milovanovic, A. Sedmak, A. Grbovic, T. Mijatovic, K. Colic, Procedia Struct. Integr. 26, 299 (2020).
10. D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, Biomaterials 29, 970 (2008).
11. L.C. Zhang, L.Y. Chen. Adv.Eng. Mater. 21, 1801215 (2019).
12. A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M.J. Davies, Acta Biomater. 6, 1640 (2010).
13. J.C. Tang, J.P. Luo, Y.J. Huang, J.F. Sun, Z.Y. Zhu, J.Y. Xu, M.S. Dargusch, M. Yan, Addit. Manuf. 22, 101392 (2020)
14. M. Kassapidou, V.F. Stenport, L. Hjalmarsson, C.B. Johansson. Acta Biomater. Odontol. Scand. 3, 53 (2017).
15. C. Delaunay, I. Petit, I.D. Learmonth, P. Oger, P.A. Vendittoli. Orthop. Traumatol. Surg. Res. 96, 894 (2010).
16. X. Mao, A.A. Wong, R.W. Crawford. Med. J. Aust. 194, 649 (2011).
17. H. Sahasrabudhe, S. Bose, A. Bandyopadhyay, Acta Biomater. 66,118 (2018).
18. J.R. Davis. Metallic materials. In Handbook of Materials for Medical Devices, ed. (Materials Park, ASM Int, 2003), pp 21-50
19. A. Munoz, M. Costa M. Toxicol. Appl. Pharmacol. 260, 1 (2012).
20. B. Rahmati, A.D. Sarhan, E. Zalnezhad, Z. Kamiab, A. Dabbagh, D. Choudhury, W. A.B.W. Abas, Ceramics Int. 42, 466 (2016).
21. X. Wei, D. Zhao, B. Wang, W. Wang, K. Kang, H. Xie, B. Liu, X. Zhang, J. Zhang, Z. Yang, Exp. Biol. Med. 241, 592 (2016).
22. E.T.K. Demann, P.S. Stein, J.E. Hauberinch, J. Long Term Eff. Med. Implants 15, 687 (2005).
23. A.B.G. Lansdown, Crit. Rev. Toxicol. 48, 596 (2018).
24. Y. Wang, J. Wan, R.J. Miron, Y. Zhao, Y. Zhang, Nanoscale 8, 11143 (2016).
25. L.A. Dykman, N.G. Khlebtsov, Biochemistry 81, 1771 (2016).
26. Y. Yang, C. He, E. Dianyu, W. Yang, F. Qi, D. Xie, L. Shen, Sh. Peng, C. Shuai, Mater. Des. 185, 108259 (2020).
27. J. Liu, L. Yi, Liquid Metal Biomaterials—Principles and Applications. (Springer, Singapore, 2018).
28. J. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, Chem. Soc. Rev. 47, 21518 (2018).
29. F. Liu, Y. Yu, L. Yi, J. Liu. Sci. Bull. 61, 939 (2016).
30. X. Wang, J. Liu, Micromachines 7, 206 (2016).
31. E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey. Adv. Mater. 25, 1589 (2013).
32. Y. Li, H. Jahr, J. Zhou, A.A. Zadpoor, Acta Biomater. 115, 29 (2020).
33. J.O. Milewski, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry. (Springer, Switzerland, 2017).
34. S. Ghods, E. Schultz, C. Wisdom, R. Schur, R. Pahuja R, A. Montelione, D. Arola, M. Ramulu, Materialia 9, 100631 (2020).
35. L. F. Velásquez-García, Y. Kornbluth, Annu. Rev. Biomed. Eng. 23, 307 (2021).
36. J. Lewis. Adv. Funct. Mater. 16, 2193 (2016).
37. L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Adv. Mater. 29, 1604211 (2017).
38. K. Zhu, S.R. Shin, T. Van Kempen, Y.C. Li, V. Ponraj, Adv. Funct. Mater. 27, 1605352 (2017).
39. J. Zhang, S. Zhao, M. Zhu, Y. Zhu, Y. Zhang Y, Z. Liud, C. Zhan, J. Mater. Chem. 2, 7583 (2014).
40. S.A. Campbell, Fabrication Engineering and the Micro- and Nanoscale, (New York, Oxford Univ. Press. 2013).
41. Y.S. Kornbluth, R.H. Mathews, L. Parameswaran, L.M. Racz, L.F. Velásquez-García, Nanotechnology 30, 285602 (2019).
42. Y.S. Kornbluth, R.H. Mathews, L. Parameswaran, L.M. Racz, L.F. Velásquez-García, Addit. Manuf. 36, 101679 (2020).
43. H. Lyu, X. Zhang, F. Liu, Y. Huang, Z. Zhang, J. Micromech. Microeng.29, 115004 (2019).
44. T. Matsuura, T. Takai, F. Iwata, Jpn. J. Appl. Phys. 56, 105502 (2017).
45. M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, G.W. Römer, Addit. Manuf. 24,391 (2018).
46. X. Zhang, Y. Zhang, Y. Li, Y. Lei, Z. Li, A. Sun, G. Xu, M. F. Yu, J. Guo, J. Electrochem. Soc.166, 676 (2019).
47. C. Li, J. Hu, L. Jiang, C. Xu, X. Li, Y. Gao, L. Qu, Nanophotonics 9, 691 (2020).
48. M.R. Henry, S. Kim, A.G. Fedorov. J. Phys.Chem. C 120, 10584 (2016).
49. R. Córdoba, P. Orús, S. Strohauer, T.E. Torres, J.M. De Teresa, Sci. Rep. 9, 14076 (2019).
50. T. Wang, L. Lv, L. Shi, B. Tong, X. Zhang, Plasma Process. Polymers 17, e2000034 (2020).
51. Y.S. Kornbluth, R.H. Mathews, L. Parameswaran, L.M. Racz, L.F. Velásquez-García. J. Phys. Appl. Phys. 51, 165603 (2018).
52. J.H. Kim, M.Y. Kim, J.C. Knowles, S. Choi, H. Kan, S.H. Park, S.M. Park, H.W. Kim, J.T. Park, J.H. Lee, H.H. Lee, Dental Mater. 36, 945(2020).
53. E.K. Park, J.Y. Lim, I.S. Yun, J.S. Kim, S.H. Woo, D.S. Kim, K.W. Shim, J. Craniofac. Surg. 27, 943 (2016).
54. J. Imanishi, P.F.M. Choong. Int. J. Surg. Case Rep. 10, 83 (2015).
55. J.L. Aranda, M.F. Jiménez, M. Rodríguez, G. Varela, Eur. J. Cardiothorac. Surg. 48, 92 (2015).
56. R.J. Mobbs, M. Coughlan, R. Thompson, C.E. Sutterlin, K. Phan, J. Neurosurg. Spine 26, 513 (2017).
57. L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B.J. Wicker. Int. J. Biomater. 2012, 245727 (2012).
58. R.A. Hsu, J.K. Ellington, Foot Ankle Spec. 8, 483 (2015).
59. T.J. Dekker, J.R. Steele, A.E. Federer, K.S. Hamid, S.B. Adams, Foot Ankle Int. 39, 916 (2018).
60. V. Finazzi, A.G. Demir, C.A. Biff, F. Migliavacca, L. Petrini, B. Previtali, J. Manuf. Process. 55, 161 (2020).
61. F.A. Shah, O. Omar, F. Suska, A. Snis, A. Matic, L. Emanuelsson, B. Norlindh, J. Lausmaa, P. Thomsen, A. Palmquist, Acta Biomater. 36, 296 (2016).
62. S.C. Kim, W.L. Jo, Y.S. Kim, S.Y. Kwon, Y.S. Cho, Y.W. Lim. Tissue Eng. Regen. Med.16, 11 (2019).
63. R. Wauthle, J. Van der Stok, S.A. Yavari, J. Van Humbeeck, J.P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Acta Biomater. 14, 217 (2015).
64. Y. Guo, K. Xie, W. Jiang, L. Wang, G. Li, S. Zhao, W. Wu, Y. Haoet ACS Biomater. Sci. Eng. 5, 1123 (2019).
65. H.P. Tang, K. Yang, L. Jia, W.W. He, L. Yang, X.Z. Zhang. JOM 72, 1016 (2020).
66. G.K. Meenashisundaram, N. Wang, S. Maskomani, S. Lu, S.K. Anantharajan, S. Thameem Dheen, S.M.L. Nai, J.Y.H. Fuh, J. Wei, Mater. Sci. Eng. 108, 110478 (2020).
67. S. Dutta, K.B. Devi, M. Roy, Adv. Powder Technol. 28, 3204 (2017).
68. N. Kleger, M. Cihova, K. Masania, A.R. Studart, J.F. Löffler, Adv. Mater. 31, 1903783 (2019).
69. D. Carluccio, C. Xu, J. Venezuela, Y. Cao, D. Kent, M. Bermingham, A. Gökhan Demir, B. Previtali, Q. Ye, M. Dargusch, Acta Biomater. 103, 346 (2020).
70. D. Hong, D.T Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H. A Kuhn, P.N. Kumta, Acta Biomater. 45, 375 (2016).
71. Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L.I Fockaert, M.A. Leeflang, B. Pouran, Y. Gonzalez-Garcia, H. Weinans, J.M.C Mol, J. Zhou, A. A. Zadpoor, Acta Biomater. 77, 380 (2018).
72. C. Culmone, G. Smit, P. Breedveld. Addit. Manuf. 27, 461 (2019).
73. S. Banerjee. ACS Omega 5, 2041 (2020).
74. D.T. Snyder, C.J. Pulliam, Z. Ouyang, R.G. Cooks. Anal. Chem. 88, 2 (2016).
75. A. Sakes, K. Hovlan, G. Smit, J. Geraedts, P. Breedveld. J. Med. Devices 12, 011007 (2018).
76. D.I. Baila, C.V. Doicin, C.M. Cotrut, M.E. Ulmeanu, I.G. Ghionea, C.I. Tarba. Metalurgija 55, 663 (2016).
77. S. Nahata, O.B. Ozdoganlar. Procedia Manuf. 34, 772 (2019).
78. K. Leibrandt, P. Wisanuvej, G. Gras, J. Shang, C.A. Seneci, P. Giataganas, V. Vitiello, A. Darzi, G.Z. Yang, IEEE Robot. Autom. Lett. 2, 1704 (2017).