مروری بر خواص الکترونیکی و ساختاری فتوکاتالیزگرهای تیتانیوم دی اکسید برای حذف آلاینده های زیست محیطی پساب ها
محورهای موضوعی : محیط زیست و بهداشتعبدالحمید دهقانی 1 , اعظم مؤذنی بیستگانی 2 , میلاد قزلسفلو 3 , سهیل دهقانی سیاهکی 4 , حمید رضا مرادی 5
1 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان
2 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان
3 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان
4 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان
5 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان
کلید واژه: تیتانیوم دی اکسید, فتوکاتالیز, رنگهای نساجی, پسابهای دارویی,
چکیده مقاله :
امروزه، تصفیه آلاینده های زیست محیطی پساب ها(رنگهای نساجی و فاضلابهای ناشی از پساب های دارویی) به یکی از مسائل چالش برانگیز تبدیل شدهاست و روشهای متعددی برای تصفیه این دسته از پساب ها از جمله روشهای شیمیایی، فیزیکی و بیولوژیکی مورد استفاده قرار گرفته است که هر کدام از این روشها دارای مزایا و معایب خاص خود بوده است. در چند دهه اخیر، تیتانیوم دی اکسید بهدلیل خواص شیمیایی و فیزیکی منحصر بهفردش، شرایط مناسبی برای کاربردهای زیست محیطی ایجاد کردهاست. اساس فرایندهای فتوکاتالیزگری، مبتنی بر تولید گونههای بسیار فعال مانند رادیکالهای هیدروکسیل میباشد که این گونههای فعال، گستره وسیعی از آلایندههای آلی را به سرعت اکسید میکنند. تیتانیوم دی اکسید به عنوان یک نیمه هادی بهدلیل ارزان قیمت بودن، عدم سمیت، پایداری شیمیایی بالا، دردسترس بودن و بازده بالا بهعنوان یک فتوکاتالیزگر کارآمد جهت اکسایش ترکیبات آلی، سمیت زدایی، احیا فلزات سمی، حذف موثر فلزات سنگین، تخریب باکتریها و ویروسها مورد استفاده قرار گرفته است. از آنجایی که تیتانیوم دی اکسید و بسیاری از نیمه هادیهای دیگر دارای شکاف باند بزرگی هستند، استفاده از تصفیه فتوکاتالیزگری آب با استفاده از تیتانیوم دی اکسید بهدلیل راندمان نسبتا پایین آن محدود شدهاست. به منظور بهبود راندمان فتوکاتالیزگری تیتانیوم دی اکسید برای تصفیه آب، و همچنین سایر کاربردهای فتوکاتالیزگری، تحقیقات زیادی برای گسترش پاسخ فتوکاتالیزگری تیتانیوم دی اکسید به محدوده مرئی انجام شدهاست. در این مقاله، به طور نظامند به معرفی تیتانیوم دی اکسید و بررسی خواص الکترونیکی و ساختاری آن پرداخته می شود.
Today, the treatment of environmental pollutants (textile dyes and wastewater from pharmaceutical wastes) has become one of the most challenging issues, and several methods have been used to treat wastewater, including chemical, physical, and biological methods, each of these methods has its own advantages and disadvantages. In recent decades, titanium dioxide has created suitable conditions for environmental applications due to its unique chemical and physical properties. The basis of photocatalysis processes is based on the production of highly active species such as hydroxyl radicals, which quickly oxidize a wide range of organic pollutants. Titanium dioxide as a semiconductor is an efficient photocatalyst which has been used for oxidation of organic compounds, detoxification, regeneration of toxic metals, effective removal of heavy metals, destruction of bacteria and viruses. Since titanium dioxide and many other semiconductors have a large band gap, the use of photocatalytic water treatment using titanium dioxide is limited due to its relatively low efficiency. In order to improve the photocatalytic efficiency of titanium dioxide for water purification, as well as other photocatalytic applications, a lot of research has been done to extend the photocatalytic response of titanium dioxide to the visible range. In this article, titanium dioxide is systematically introduced and its electronic and structural properties are investigated.
1. H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev 112, 5919-5948 (2012)
2. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1-14 (2004)
3. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev 39, 4206-4219 (2010)
4. M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, Energy Environ. Sci 5, 8075-8109 (2012)
5. R. Andreozzi, V. Caprio, I. Ermellino, A. Insola, V. Tufano, Ind. Eng. Chem. Res 35, 1467-1471 (1996)
6. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chem. Rev 95, 735-758 (1995)
7. O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, Appl. Catal. B 98, 27-38 (2010)
8. T.L. Thompson, J.T. Yates, Chem. Rev 106, 4428-4453 (2006)
9. N.A.V.E. Serpone, A.V. Emeline, J. Phys. Chem. Lett 3, 673-677 (2012)
10. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Sol. Energy 135, 527-535 (2016)
11. B. Fang, Z. Xing, D. Sun, Z. Li, W. Zhou, Adv Powder Technol 1, 100021 (2022)
12. A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev 102, 3811-3836 (2022)
13. M. Güdel, Living Rev. Sol. Phys 4, 1-137 (2007)
14. Z. Li, X. Xu, X. Sheng, P. Lin, J. Tang, L., Pan, Y. Yamauchi, ACS nano 15, 12535-12566 (2021)
15. R. Ameta, S.C. Ameta, Crc Press (2016)
16. M.M. Khan, S.F. Adil, A. Al-Mayouf, J. Saudi Chem. Soc 19, 462-464 (2015)
17. S.H.S. Chan, T. Yeong Wu, J.C. Juan, C. Y. Teh, J. Chem. Technol. Biotechnol 86, 1130-1158 (2011)
18. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev 43, 7520-7535 (2014)
19. A.B. Djurišić, Y.H. Leung, A.M.C. Ng, Mater. Horiz 1, 400-410 (2014)
20. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, & D. Mantzavinos, Chem. Technol. Biotechnol 83, 769-776 (2008)
21. R. Pawar, C.S. Lee, William Andrew (2015)
22. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sust. Energ. Rev 81, 536-551 (2018)
23. Z. Shayegan, C.S. Lee, F. Haghighat, J. Chem. Eng 334, 2408-2439 (2018)
24. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2-19 (2016)
25. L. Zhang, J. Ran, S.Z. Qiao, M. Jaroniec, Chem. Soc. Rev 48, 5184-5206 (2019)
26. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Appl. Sci 9, 2489 (2019)
27. A. Mills, S. Le Hunte, J. Photochem. Photobiol 108, 1-35 (1997)
28. X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Sci. China Mater 57, 70-100 (2014)
29. Y. Guo, S. Chu, S. Yan, Y. Wang, Z. Zou, Chem comm 46, 7325-7327 (2010)
30. G. Wu, W. Xing, Mater. Technol 34, 292-300 (2019)
31. D. Zhu, Q. Zhou, Environ. Nanotechnol. Monit. Manag 12, 100255 (2019)
32. H. Yang, Mater. Res. Bull 142, 111406 (2021)
33. L. Wang, J. Zhao, H. Liu, J. Huang, J Taiwan Inst Chem Eng 93, 590-602 (2018)
34. H. Yan, X. Wang, M. Yao, X. Yao, Prog. Nat. Sci.: Mater 23, 402-407 (2013)
35. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814-6817 (2018)
36. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys 44, 8269 (2005)
37. Y. Nosaka, Catal 12, 1557 (2022)
38. S. Horikoshi, N. Serpone, Catal. Today 340, 334-346 (2020)
39. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C: Photochem 13, 169-189 (2012)
40. C. Renz, Helv. Chim. Acta 4, 961-968 (1921)
41. S. Budavari, M.J. O’Neil, A. Smith, P.E. Heckelman, In; The Merck Index, 13th Edn., Merck & Co. Inc., whitehouse station, NJ 948 (1996)
42. E. Keidel, Farben-Zeitung 34, 1242-1243 (1929)
43. J. Zhang, B. Tian, L. Wang, M. Xing, J. Lei, Springer 100, (2018)
44. N. Serpone, A. Emeline, S. Horikoshi, V. Kuznetsov, V. Ryabchuk, Photochem. Photobiol. Sci 11, 1121-1150 (2012)
45. H. Yun, C. Lin, J. Li, J. Wang, H. Chen, Appl. Surf. Sci 255, 2113-2117 (2008)
46. J. Yu, Q. Xiang, M. Zhou, Appl. Catal. B 9, 595-602 (2009)
47. X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, Appl. Surf. Sci 255, 3953-3958 (2009)
48. D. Fang, Z. Luo, K. Huang, D.C. Lagoudas, Appl. Surf. Sci 257, 6451-6461 (2011)
49. R. Leary, A. Westwood, Carbon 49, 741-772 (2011)
50. M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Energy Environ. Sci 2, 1231-1257 (2009)
51. X. Chen, S.S. Mao, Chem. Rev 107, 2891-2959 (2007)
52. B. Ohtani, Y, Ogawa, S.I. Nishimoto, J. Phys. Chem. B 101, 3746-3752 (1997)
53. S.I. Kitazawa, Y. Choi, S. Yamamoto, & T. Yamaki, Thin Solid Films 515, 1901-1904 (2006)
54. C.W. Dunnill, A. Kafizas, I.P. Parkin, Chem. Vap. Deposition 18, 89-101 (2012)
55. L. Ma, S.X. Tu, Environ. Chem. Lett 9, 465-472 (2011)
56. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem 1, 1-21 (2000)
57. H. Wang, J.P. Lewis, J. Condens. Matter Phys 18, 421 (2005)
58. C. Xiaobo, Chinese J. Catal 30, 839-851 (2009)
59. M. Hosseini-Sarvari, A. Dehghani, New J Chem 44, 16776-16785 (2020)
60. M. Hosseini-Sarvari, F. Jafari, A. Dehghani, Appl. Nanosci 12, 2195-2205 (2022)
61. M. Hosseini-Sarvari, A. Dehghani, Monatsh. Chem 154, 397-405 (2023)
62. M. Koohgard, H. Karimitabar, M. Hosseini-Sarvari, Dalton Trans 49, 17147-17151 (2020)
63. S. Ahmed, M.G. Rasul, W.N. R. Martens, Brown, M.A. Hashib, WAT. AIR AND SOIL POLL 215, 3-29 (2011)
64. M. Zhao, L. Fang, G. Zhang, D. Zhuang, J. Mater. Res 18, 108-112 (2004)
65. Y. Liu, J. Li, X. Qiu, C. Burda, Water Sci. Technol 54, 47-54 (2006)
66. K.E. Karakitsou, X.E. Verykios, J. Phys. Chem 97, 1184-1189 (1993)
67. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, L. Zhang, Appl. Catal. B 62, 329-335 (2006)
68. A. Ghicov, B. Schmidt, J. Kunze, P. Schmuki, Chem. Phys. Lett 433, 323-326 (2007)
69. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem 98, 13669-13679 (2002)
70. A.D. Paola, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Int. J. Photoenergy 3, 171-176 (2001)
71. Y.M. Lu, C.K. Liu, C.M. Huang, ECS Trans 2, 101 (2007)
72. J.C. Yu, J. Yu, W. Ho, Jiang, Zhang, Chem. Mater 14, 3808-3816 (2002)
73. S. Yang, L. Gao, J. Am. Ceram 87, 1803-1805 (2004)
74. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett 32, 330-331 (2003)
75. X. Hong, Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, Y. Liu, Chem. Mater 17, 1548-1552(2005)
76. S. Rehman, R. Ullah, A. Butt, N.D. Gohar, J. Hazard. Mater 170, 560-569 (2009)
77. M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, P. Yang, Mater. Lett 60, 693-697 (2006)
78. M.S. Wong, S.W. Hsu, K.K. Rao, C.P. Kumar, J Mol Catal A Chem 279, 20-26 (2008)
79. M. Long, W. Cai, FRONT PHYS CHINA 6, 190-199 (2011)
80. M.S. Wong, W.C. Chu, D.S. Sun, H.S. Huang, J.H. Chen, P.J. Tsai, H.H. Chang, Appl. Environ. Microbiol 72, 6111-6116 (2006)
81. Y. Guo, X.W. Zhang, W.H. Weng, G.R. Han, Thin Solid Films, 515, 7117-7121 (2007)
82. Y. Ao, J. Xu, D. Fu, C. Yuan, J. Hazard. Mater 167, 413-417(2009)
83. N. Todorova, T. Giannakopoulou, T. Vaimakis, C. Trapalis, Mater Sci Eng B Solid State Mater 152, 50-54 (2008)
84. Y. Wang, J. Li, P. Peng, T. Lu, L. Wang, Appl. Surf. Sci 254, 5276-5280 (2008)
85. W.K., Jo, C.H. Yang, Build Environ 45, 819-824 (2010)
86. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Mater. Chem. Phys 116, 376-382 (2009)
87. W. Ho, C.Y. Jimmy, J Mol Catal A Chem 247, 268-274 (2006)
88. M. Ilieva, A. Nakova, V. Tsakova, J. Appl. Electrochem 42, 121-129 (2012)
89. D. Kannaiyan, E. Kim, N. Won, K. W. Kim, Y.H. Jang, M.A. Cha, D.H. Kim, J. Mater. Chem 20, 677-682 (2010)
90. J. Shang, W. Yao, Y. Zhu, N. Wu, APPL CATAL A-GEN 257, 25-32 (2004)
91. Y. GAO, J. YIN, G. REN, H. LIU, A. XING, J. Chem. Soc. Pak 33, 666 (2011)
92. S. Kuang, L. Yang, S. Luo, Q. Cai, Appl. Surf. Sci 255, 7385-7388 (2009)
93. M. Alizadeh, A.H. Mahvi, H.J. Mansoorian, Iranian Journal of Health, Safety and Environment 1, 1-8 (2014)
94. C.A.P. Almeida, N.A. Debacher, A. J. Downs, L. Cottet, C.A.D. Mello, J. Colloid Interface Sci 332, 46-53 (2009)
95. S. Shojaei, S. Khammarnia, S. Shojaei, M. Sasani, J. Water Environ. Nanotechnol 2, 129-135 (2017)
96. J. Yang, K. Qiu, J. Chem. Eng 209-217 (2010)
97. R.K.S. Ahmadi, H. Nazarnejad, F. Asadzadeh, Iranian Journal of Research in Environmental Health. Spring 8, 46-58 (2022)
98. V.K. Gupta, J. Environ. Manage 90, 2313-2342 (2009)
99. A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, R. Hashim, J. Hazard. Mater 170, 357-365 (2009)
100. T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, s J. Environ. Sci. Health C: Toxicol 29, 177-222 (2011)
101. T. Ahmad, M. Danish, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, M.N.M. Ibrahim, Environ. Sci. Pollut. Res 19, 1464-148 (2012)
102. M.S. Lucas, J.A. Peres, Dyes Pigm 74, 622-629 (2007)
103. M. Shoeb, B.R. Singh, M. Mobin, G. Afreen, W. Khan, A.H. Naqvi, PloS one 10, e0135055 (2015)
104. K. Svobodová, M. Senholdt, Č. Novotný, A. Rehorek, Process Biochem 42, 1279-1284 (2007)
105. S. Shakoor, A. Nasar, J Taiwan Inst Chem Eng 66, 154-163 (2016)
106. A. Demirbas, J. Hazard. Mater 167, 1-9 (2009)
107. C. Hignite, D.L. Azarnoff, Life Sci 20, 337-341 (1997)
108. S.S. Verenitch, C.J. Lowe, A. Mazumder, J. Chromatogr. A 1116, 193-203 (2006)
109. M. Klavarioti, D. Mantzavinos, & D. Kassinos, Environ. Int 35, 402-417 (2009)
110. M. Lindroos, D. Hörnström, G. Larsson, M. Gustavsson, A.J. van Maris, J. Hazard. Mater 365, 74-80 (2019)
111. R. Mirzaei, M. Yunesian, S. Nasseri, M. Gholami, E. Jalilzadeh, S. Shoeibi, A. Mesdaghinia, Sci. Total Environ 619, 446-459 (2018)
112. R. Kallenborn, J. Fick, R. Lindberg, M. Moe, K.M. Nielsen, M. Tysklind, T. Vasskog, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks 61-74 (2008)
113. V.V. Satyanarayana Gidla, A.K. VJ, Indian Journal of Veterinary Sciences & Biotechnology 19 (2023)
114. C. Wang, X. Liu, N.K. Demir, J.P. Chen, K. Li, Chem. Soc. Rev 45, 5107-5134 (2016)
115. C. Wang, X. Liu, N.K. Demir, J.P. Chen, K. Li, Chem. Soc. Rev 45, 5107-5134 (2016)
116. Y. Bulut, Z. Baysal, J. Environ. Manage 78, 107-113 (2006)
117. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater 211, 317-331 (2012)
118. X. Qu, P.J. Alvarez, Q. Li, Water Res 47, 3931-3946 (2013)
119. Z. Wei, J. Liu, W. Shangguan, Chinese J. Catal 41, 1440-1450 (2020)
120. X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Sci. Total Environ 743, 140694 (2020)
121. K.U.N.A.L., Mondal, A. Sharma, Nanosci. Technol 36-72 (2014)
122. M. Muruganandham, M. Swaminathan, Sol. Energy Mater. Sol 81, 439-457 (2004)
123. R. Li, J. Heuer, T. Kuckhoff, K. Landfester, C.T. Ferguson, Angew. Chem., Int. Ed. Engl e202217652 (2023)
124. Q.Y. Lee, H. Li, Micromachines 12, 907 (2021)
125. E. Kusiak-Nejman, A.W. Morawski, Appl. Catal. B 253, 179-186 (2019)
126. C.G. Lee, H. Javed, D. Zhang, J.H. Kim, P. Westerhoff, Q. Li, P.J. Alvarez, Environ. Sci. Technol 52, 4285-4293 (2018)
127. P. Cervantes-Avilés, N.C. Piñas, J. Ida, G. Cuevas-Rodríguez, J. Environ. Manage 190, 35-44 (2017)
128. C. Minero, D. Vione, Appl. Catal. B 67, 257-269 (2006)
129. S. Mallakpour, E. Nikkhoo, Adv Powder Technol 25, 348-353 (2014)
130. N. Raza, W. Raza, H. Gul, M. Lee, J. Azam, K. Vikrant, K.H. Kim, J. Clean. Prod 254, 120031 (2020)
131. M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Dyes Pigm 77, 327-334 (2008)
132. K. Chiang, T.M. Lim, L. Tsen, C.C. Lee, APPL CATAL A-GEN 261, 225-237 (2004)
133. M.F. Nsib, A. Maayoufi, N. Moussa, N. Tarhouni, A. Massouri, A. Houas, Y. Chevalier, J. Photochem. Photobiol., A 251, 10-17 (2013)
134. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Appl. Catal. B 49, 227-232 (2004)
135. D.M. Blake, J. Webb, C. Turchi, K. Magrini, Sol. Energy Mater 24, 584-593 (1991)
136. H.Y. Cheng, K.C. Chang, K.L. Lin, C.M. Ma, AIP Conference Proceedings 1, (2018)
137. H. Jensen, K.D. Joensen, J.E. Jørgensen, J.S. Pedersen, G. Søgaard, J Nanopart Res 6, 519-526 (2004)
138. Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, P.R. Solanki, Sci. Rep 7, 7672 (2017)
139. M. Saquib, M. Muneer, Desalination 155, 255-263 (2003)
140. M. Faisal, M.A. Tariq, M. Muneer, Dyes Pigm 72, 233-239 (2007)
141. R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan, Y.R. Lee, J. Photochem. Photobiol. B, Biol 162, 500-510 (2016)
142. O. Suárez-Iglesias, S. Collado, P. Oulego, M. Díaz, J. Chem. Eng 313, 121-135 (2017)
143. H.C. Hsu, I. Shown, H.Y. Wei, Y. C. Chang, H.Y. Du, Y.G. Lin, K.H. Chen, Nanoscale 5, 262-268 (2013)
144. M. Minella, F. Sordello, C. Minero, Catal. Today 281, 29-37 (2017)
145. S.R. Kim, I. Ali, J.O. Kim, Appl. Surf. Sci 477, 71-78 (2019)
146. W. Iqbal, B. Tian, M. Anpo, Zhang, J. Res. Chem. Intermed 43, 5187-5201 (2017)
147. Y. Çalışkan, H.C. Yatmaz, & N. Bektaş, Process Saf. Environ. Prot 111, 428-438 (2017)
148. I.M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S.G. Neophytides, P. Falaras, Appl. Catal. B 42, 187-201 (2003)
149. J. Chun-Te Lin, K. Sopajaree, T. Jitjanesuwan, M.C. Lu, Sep. Purif. Technol 191, 233-243 (2018)
150. H.C. Yatmaz, A. Akyol, & M. Bayramoglu, Ind. Eng. Chem. Res 43, 6035-6039 (2004)
151. M.V. Dozzi, E. Selli, J. Photochem. Photobiol. C: Photochem 14, 13-28 (2013)
152. M.K. Tariq, A. Riaz, R. Khan, A. Wajid, H.U. Haq, S. Javed, M. Islam, Mater. Res. Express 6, 106435 (2019)
153. J. Chun-Te Lin, K. Sopajaree, T. Jitjanesuwan, M.C. Lu, Sep. Purif. Technol 191, 233-243 (2018)
154. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sep. Purif. Technol 4, 4043 (2014)
155. S.N. Phattalung, S. Limpijumnong, J. Yu, Appl. Catal. B 200, 1-9 (2017)
156. Y. Deng, Int J Environ Waste Manag 4, 366-384 (2009)
157. P. Fernandez-Ibanez, M.I. Polo-López, S. Malato, S. Wadhwa, J.W.J. Hamilton, P.S.M. Dunlop, J.A. Byrne, J. Chem. Eng 261, 36-44 (2015)
158. J. Singh, S. Sharma, S. Basu, J. Photochem. Photobiol 376, 32-42 (2019)
159. S.G. Poulopoulos, A. Yerkinova, G. Ulykbanova, V.J. Inglezakis, PLoS One 14, e0216745 (2019)
160. A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, Water Res 31, 787-798 (1997)
161. W. Wang, J. Fang, S. Shao, M. Lai, C. Lu, Appl. Catal. B 217, 57-64 (2017)
162. T. Phongamwong, N. Barrabés, W. Donphai, T. Witoon, G. Rupprechter, M. Chareonpanich, Appl. Catal. B 325, 122336 (2023)
163. M. Hosseini-Sarvari, Z. Hosseinpour, Res. Chem. Intermed 45, 1829-1840 (2019)
164. C. Li, Z. Sun, W. Zhang, C. Yu, S. Zheng, Appl. Catal. B 220, 272-282 (2018)
165. X. Pan, W. Dong, J. Zhang, Z. Xie, W. Li, H. Zhang, B. Lei, ACS Appl. Mater. Interfaces 13, 39446-39457 (2021)
166. V. Soltaninejad, A. Maleki, J. Photochem. Photobiol., A 404, 112906 (2021)
167. S. Krishnan, A. Shriwastav, J. Environ. Chem. Eng 9, 104699 (2021)
168. Y. Sun, Y. Sun, C. Dall’Agnese, X. F. Wang, G. Chen, O. Kitao, T. Ikeuchi, ACS Appl. Energy Mater 1, 2813-2820 (2018)
169. S. Krishnan, A. Shriwastav, Environ. Res 216, 114568 (2023)