Study of the Mechanical Behavior of Municipal Solid Waste Landfill Using a Viscoplastic Constitutive Model
محورهای موضوعی : Mechanical EngineeringR Slimani 1 , D Dias 2 , B Sbartai 3 , L Oxarango 4
1 - University-3 of Constantine, Algeria-----
Architecture, Villes, Métiers et Formations- Laboratory-, University-3 of Constantine, Algeria
2 - School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, China----
3SR Laboratory, Grenoble Alpes University, Grenoble, France
3 - University of BadjiMokhtar, Annaba, Algeria----
LMGHU Laboratory, Skikda University, Skikda, Algeria
4 - IGE Laboratory, Grenoble Alpes University, Grenoble, France
کلید واژه: municipal waste, Numerical modeling, Tests,
چکیده مقاله :
As long as there is the need for disposal of household waste there will be the need to understand the phenomena taking place in storage facilities for nonhazardous waste (municipal solid waste landfill). The understanding of landfill technology is of great importance because of its ever-changing state, whether mechanical, chemical or hydrological. In this context, there is a need to better understand the stress-strain behavior evolution with time of the landfilled waste. Based on triaxial and oedometric compression tests of municipal solid waste samples ranging from fresh to degraded waste, a viscoplastic constitutive model (Burgers creep-viscoplastic model) is used to describe the behavior of the municipal solid waste under loading. This model is able to adequately capture the stress-strain and pore water pressure response of the municipal solid waste at different ages. To illustrate its applicability, settlements due to the incremental loading of waste with time are predicted for a typical municipal solid waste landfill. The proposed model predicts the total settlement of a storage facilityin a range similar to results published in the literature. An extension of the studied municipal solid waste landfill was also investigated.
[1] BabuSivakumar G.L., Reddy K.R., Chouskey S.K., 2010a, A constitutive model for municipal solid waste incorporating mechanical creep and biodegradation induced compression, Waste Management Journal 30(1): 11-22.
[2] BabuSivakumar G.L., Reddy K.R., Chouskey S.K., Kulkarni H., 2010b, Prediction of long-term municipal solid waste landfill settlement using constitutive model, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 14(2): 139-150.
[3] BabuSivakumar G.L., Reddy K.P., Srivastava A., 2012, Influence of spatially variable geotechnical properties of MSW on stability of landfill slopes, Journal of Hazardous, Toxic, and Radioactive Waste 18(1): 27-37.
[4] Barral C., 2008, Etude des Transferts D'eau et de Gaz Dans les Géomateriaux Argileux Utilises Dans les Couvertures des, Installations de Stockage de Déchets Non Dangereux (ISDND) Thèse de Doctorat.
[5] Beaven R.P., Powrie W., 1995, Hydrogeological and geotechnical properties of refuse using a large scale compression cell, Proceedings of the Sardinia 1995, Fifth International Waste Management and Landfill Symposium.
[6] Bonini M., Debernardi D., Barla M., Barla G., 2009, The mechanical behavior of clay shales and implications on the design of tunnels, Rock Mechanics and Rock Engineering 42: 361-388.
[7] BRGM., 1997, Mise en Oeuvre de Matériaux Rapportés Destinés au Confinement des Centres de Stockage, Guide Technique, BRGM Editions, Orléans, France.
[8] Blight G.E., Fourie A.B., 2005, Catastrophe revisited–disastrous flow failures of mine and municipal solid waste, Geotechnical and Geological Engineering 23: 219-248.
[9] Bouazza A., Pump W.L., 1997, Settlement and the design of municipal solid waste landfills, Environmental Geotechnics - Proceedings of the 1st Australia-New Zealand Conference on Environmental Geotechnics.
[10] Caicedo B., Giraldo E., Yamin L., 2002, The landslide of dona juana landfill in bogota a case study, Environmental Geotechnics (4th ICEG), Balkema, Lisse, Netherlands.
[11] Castelli F., Maugeri M., 2008, Experimental analysis of waste compressibility, Geotechnical Special Publications 177: 208e215.
[12] Chouksey S.K., 2009, Analytical Models for Fiber Reinforced Soil and Municipal Solid Waste, MS Thesis, Indian Institute of Science Bangalore, India.
[13] Elagroudy S.A., Abdel-Razik M.H., Warith M.A., Ghobrial F.H., 2008, Waste settlement in bioreactor landfill models, Waste Management 28: 2366-2374.
[14] Feng S.J., Cao B.Y., Bai Z.B., Yin Z.Y., 2016, A constitutive model for municipal solid waste considering the effect of biodegradation, Géotechnique Letters 6: 1-6.
[15] Gibson R.E., Lo K.Y., 1961, A theory of soils exhibiting secondary compression, Acta Polytechnica Scandinavica 10: 1-15.
[16] Gourc J.P., Staub M.J., Conte M., 2010, Decoupling MSW settlement into mechanical and biochemical processes— modeling and validation on large-scale setups, Waste Management 30(8-9): 1556-1569.
[17] Grisolia M., Napoleoni Q., Tancredi G., 1995, The use of a triaxial test for the mechanical characterization of MSW, Proceedings 5th International Waste Management and Landfill Symposium, Sardinia.
[18] Hettiarachchi C.H., Meegoda J.N., Hettiarachchi P., 2009, Effect of gas and moisture on modeling of bioreactor landfill settlement, Waste Management 29: 1018-1025.
[19] Hettiarachchi C.H., Meegoda J.N., Tavantzis J., Hettiarachchi P., 2007, Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills, Journal of Hazardous Materials B 139: 514-522.
[20] Hossain M.S., Haque M.A., 2009, Stability analyses of municipal solid waste landfills with decomposition, Geotechnical and Geological Engineering 27: 659.
[21] Itasca, 2007, Itasca Consulting Group, Inc., Manual - Creep Material Models-, FLAC2D.
[22] Jessberger H.L., Syllwasschy O., Kockel R., 1995, Investigations of waste body-behavior and waste-structure-interaction, Proceedings Sardinia 95, 5th International Landfill Symposium, Cagliari.
[23] Reddy K. R., Asce F., Giri R. K., Asce S.M., Kulkarni H.S., Asce M., 2015, Modeling coupled hydromechanical behavior of landfilled waste in bioreactor landfills, Journal of Hazardous, Toxic, and Radioactive Waste 12(1): D4015004
[24] Lanini S., 1998, Analyse et Modélisation des Transferts de Masse et de Chaleur au Sein des Décharges D’ordures Ménagères, Thèse de Doctorat, Institut National Polytechnique des Toulouse.
[25] Machado S.L., Carvalho M.F., Vilar O.M., 2002, A constitutive model for municipal solid waste, Journal of the Environmental Engineering 128(11): 940-951.
[26] Machado S.L., Vilar O.M., Carvalho M.F., 2008, A constitutive model for long-term municipal solid waste mechanical behaviour, Computers and Geotechnics 35: 775-790.
[27] McDougall J., 2007, A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste, Computeurs and Geotechnics 34: 229-246.
[28] Merry S.M., Kavazanjian E., Fritz W.U., 2005, Payatas landfill failure, Journal of the Performance of Constructed Facilities 19(2): 100-107.
[29] Olivier F., 2003, Tassements des Déchets en CSD de Classe II : du Site au Modèle, Thèse de Doctorat, Spécialité Géomécanique, Géophysique et Géochimie, Université Joseph Fourrier, Grenoble.
[30] Olivier F., Gourc J.-P., 2007, Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell, Waste Management 27: 44-58.
[31] Park H.I., Lee S.R., 1997, Long-term settlement behavior of landfills with refuse decomposition, Journal of Resource Management and Technology 24(4): 159-165.
[32] Pellet F., Roosefid M., Deleruyelle F., 2009, On the 3D numerical modeling of the time-dependent development of the damage zone around underground galleries during and after excavation, Tunneling and Underground Space Technology 24: 665-674.
[33] Reddy K.R., Hettiarachchi H., Parakalla N.S., Gangathulasi J., Bogner J.E., 2009a, Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, Waste Management 29(2): 952-959.
[34] Reddy K.R., Hettiarachchi H., Parakalla N., Gangathulasi J., Bogner J.E., Lagier T., 2009b, Geotechnical properties of landfilled municipal solid waste under short-term leachate recirculation operations, Waste Management and Research 27(6): 578-587.
[35] Reddy K.R., Hettiarachchi H., Gangathulasi J., Bogner J.E., Lagier T., 2009c, Geotechnical properties of synthetic municipal solid waste, International Journal of Geotechnical Engineering 3(3): 429-438.
[36] Tano B.F.G., Dias D., Fowmes G.J., Olivier F., Stoltz G., Nathalie T.-F., 2016, Numerical modeling of the nonlinear mechanical behavior of multilayer geosynthetic system for piggyback landfill expansions, Geotextiles, and Geomembranes 2016: 1-17.
[37] Thomas S., 2000, Centres de Stockage de Déchets - Géomécanique des Déchets et de Leur Couverture (Expérimentations Sur Sites et Modélisation), Thèse de Doctorat, Laboratoire Lirigm, Université de Grenoble.
[38] Sia A.H.I., Dixon N., 2012, Numerical modeling of landfill lining system–waste interaction: implications of parameter variability, Geosynthetics International 19(5): 393-408.
[39] Singh M.K., Fleming I.R., 2008, Estimation of the mechanical properties of MSW during degradation in a laboratory compression cell, Geotechnical Special Publications 177: 200e207.
[40] Singh M.K., Fleming I.R., 2011, Application of a hyperbolic model to municipal solid waste, Geotechnique 61(7): 533-547.
[41] Stark T.D., Eid T.H., Evans W.D., Sherry P.E., 2000, Municipal solid waste slope failure II: Stability analyses, Journal of Geotechnical and Geoenvironmental Engineering 126(5): 408-417.
[42] Stoltz G., 2009, Transferts en Milieu Poreux Biodégradable, Non Saturé, Déformable et à Double Porosité : Application Aux ISDND, Ph.D. Thesis, Université Joseph Fourier.
[43] Sowers G.F., 1973, Settlement of waste disposal fills, Proceedings 8th International Conference on Soil Mechanics and Foundation Engineering, Moscou.
[44] Vilar O.M., Corvalho M., 2004, Mechanical properties of municipal solid waste, Journal of Testing and Evaluation 36(6): 1-12.
[45] Wall D.K., Zeiss C., 1995, Municipal landfill biodegradation and settlement, Journal of Environmental Engineering 121: 214-224.
[46] Zekkos D.P., 2005, Evaluation of Static and Dynamic Properties of Municipal Solid Waste, Dissertation, Doctor of Philosophy, Department of Civil and Environmental Engineering, University of California, Berkeley, California.