کنترل موقعیت یک سیستم سرو الکتروهیدرولیک مبتنی بر کنترلکننده فازی تطبیقی مودلغزشی
محورهای موضوعی :
مهندسی برق کنترل
حمید قدیری
1
,
حامد خدادادی
2
1 - دانشکده مهندسی برق، پزشکی و مکاترونیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه آزاد اسلامی واحد خمینی شهر، اصفهان، ایران
تاریخ دریافت : 1401/11/06
تاریخ پذیرش : 1402/02/05
تاریخ انتشار : 1402/09/01
کلید واژه:
کنترلکننده فازی,
تطبیقی,
سیستم سرو الکتروهیدرولیک,
کنترل موقعیت,
کنترل مدلغزشی,
چکیده مقاله :
سیستم های سرو الکتروهیدرولیک یکی از مهم ترین سیستمهای کنترلی هستند که در بسیاری از حوزه ها از جمله اتوماسیون صنعتی، ماشین های کنترل عددی، صنعت نفت و گاز و غیره مورد استفاده قرار میگیرند. با توجه به رفتار غیرخطی اجزای سیستم هیدرولیکی و وجود نامعینی های مختلف در عملکرد آن، مدلسازی و کنترل این سیستم ها را با مشکل مواجه می سازد. در این مقاله از به منظور غلبه بر نامعینیها یک کنترلکننده تطبیقی فازی مبتنی بر کنترل مودلغزشی برای کنترل موقعیت یک سیستم سرو الکتروهیدرولیک پیشنهاد شده است. ارایه کنترلکننده مقاوم پیشنهادی منجر به وابستگی حداقلی به مدل سیستم خواهد شد. پایداری سیستم در حضور عدم قطعیت ها با تکیه بر تئوری لیاپانوف، اثبات شده و با توجه به متغیر با زمان بودن عدم قطعیت ها، برای تقریب حداکثر باند و محدوده عدم قطعیت ها، یک قانون تطبیق برای تخمین آن نیز پیشنهاد شده است. نتایج شبیه سازی، عملکرد مناسب و پایدار کنترل کننده فازی تطبیقی مودلغزشی پیشنهادی را نسبت به سایر روشهای کنترلی نشان می دهد.
چکیده انگلیسی:
Electro-hydraulic servo systems are one of the most important control systems used in many fields such as industrial automation, numerical control machines, the oil and gas industry. Due to the non-linear behavior of hydraulic system components and the presence of various uncertainties in their operation, the modeling and control of these systems face problems. In this paper, a fuzzy adaptive controller based on sliding mode control is proposed to control the position of an electrohydraulic servo system and overcome the uncertainties. The proposed robust controller results in minimal dependence on the system model. The system's stability in the presence of uncertainties has been proved by applying the Lyapunov theory and considering the time-varying nature of the uncertainties. Besides, to approximate the maximum band and the range of uncertainties, an adaptation law has been proposed for its estimation. The simulation results show the reasonable and stable performance of the proposed adaptive fuzzy controller compared to other control methods.
منابع و مأخذ:
D. Kalantari, “Knowledge and design of industrial hydraulic systems”, Publisher: Naghous, 1394
H. Khodadadi, and H. Ghadiri, “Fuzzy logic self-tuning PID controller design for ball mill grinding circuits using an improved disturbance observer”, Mining, Metallurgy & Exploration, vol. 36, no. 6, pp. 1075-1090, 2019, doi: 10.1007/s42461-019-0098-y.
M. Ghahremani, H. Ghadiri, and M. Hamghalam, “Local features integration for content-based image retrieval based on color, texture, and shape”, Multimedia Tools and Applications, vol. 80, no.18, pp. 28245-28263, 2021, doi: 10.1007/s11042-021-10895-z.
H. Ghadiri, A. Mohammadi, and H. Khodadadi, “Fast terminal sliding mode control based on SDRE observer for two-axis gimbal with external disturbances”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 2, pp.70, 2022, doi: 10.1007/s40430-022-03369-2.
P. Rahmanipour, and H. Ghadiri, “Stability analysis for a class of fractional-order nonlinear systems with time-varying delays”, Soft Computing, vol. 24, no. 22, pp.17445-17453, 2020, doi: 10.1007/s00500-020-05118-w.
A. Emamifard, and H. Ghadiri, “Robust control of nonlinear fractional-order systems with unknown upper bound of uncertainties and external disturbance”, IETE Journal of Research, 2021, pp. 1-12, doi: 10.1080/03772063.2021.1902870.
A. Zebardast, and H. Ghadiri. “DC Motor Control Using Sliding Mode Method”, International Conference on Electrical and Computer Engineering, 2013.
K. Sinthipsomboon, I. Hunsacharoonroj, J. Khedari, W. Pongaen and P. Pratumsuwan, “A hybrid of fuzzy and fuzzy self-tuning PID controller for servo electro-hydraulic system,” 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 2011, pp. 220-225, doi: 10.1109/ICIEA.2011.5975583.
T. Samakwong, and W. Assawinchaichote, “PID Controller Design for Electro Hydraulic Servo Valve System with Genetic Algorithm”, Procedia Computer Science, vol. 86, pp. 91-94, 2016, doi: 10.1016/j.procs.2016.05.023.
I. Salman, M. A. Choudry, and A. Ahsan, “Application of Fractional Order Control Technique to an Electro Hydraulic Position Servomechanism”, Journal of Engineering & Technology, vol. 9, no.4, pp.9-14, 2015, doi: 10.1007/978-3-319-50249-6_10.
Q. Gaol, Y. Hou, T. Deng, Ch. Wang, and R. Hou,” Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning ”, Advances in Mechanical Engineering, vol. 7, no. 12, pp. 1-11, 2015, doi: 10.1177/1687814015620736.
M. E. S. M. Essa, M. A. S. Aboelela, M. A. Moustafa Hassan and S. M. Abdraboo, "Fractional Order Fuzzy Logic Position and Force Control of Experimental Electro-Hydraulic Servo System," 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2019, pp. 1-4, doi: 10.1109/MOCAST.2019.8741550.
N. M. Tri, D. N. Chi Nam, H. G. Park, and K. K. Ahn, “Trajectory control of an electro hydraulic actuator using an iterative backstepping control scheme”, Mechatronics, vol. 29, pp. 96-102, 2015, doi: 10.1016/j.mechatronics.2014.10.002.
E. Detiček, and M. Kastrevc,” Design of Lyapunov Based Nonlinear Position Control of Electro hydraulic Servo Systems”, Journal of Mechanical Engineering, vol. 62, no. 3, pp.163-170, 2016, doi: 10.5545/sv-jme.2015.292.
B. O. Ayinde, S. El. Ferik, S. Ibrir, M. Feki and B. A. Siddiqui, "Backstepping control of an electro hydraulic servo system subject to disturbance and parameter uncertainty," GCC Conference and Exhibition (GCCCE),IEEE, Muscat, pp.1-6, 2015, doi: 10.1109/IEEEGCC.2015.7060033.
D. Won , and W. Kim, “Disturbance observer based backstepping for position control of electro-hydraulic systems”, International Journal of Control, Automation and Systems, vol. 13, pp. 488-493, 2015, doi: 10.1007/s12555-013-0396-y.
W. Xuan, and Z. Fanquan, “Design of electro-hydraulic servo loading controlling system based on fuzzy intelligent water drop fusion algorithm”, Computers & Electrical Engineering, vol. 71, pp. 485-491, 2018, doi: 10.1016/j.compeleceng.2018.08.010.
K. K. Ahn, D. N. C. Nam and M. Jin, "Adaptive Backstepping Control of an Electro hydraulic Actuator”, IEEE/ ASME Transactions on Mechatronics, vol. 13, no. 3, pp. 987-995, 2014, doi: 10.1109/TMECH.2013.2265312.
M. Rawa, H. N. Mohamed, Y. Al-Turki, K. Sedraoui, and A. M. Ibrahim, “Dynamic voltage restorer under different grid operating conditions for power quality enhancement with the deployment of a PI controller using gorilla troops algorithm”. Ain Shams Engineering Journal, 102172. 2023, doi; 10.1016/j.asej.2023.102172.
S. Lu, H. Wang, G. Zhao, and G. Zhou, “Grey Wolf Particle Swarm Optimized Pump–Motor Servo System Constant Speed Control Strategy”, Machines, vol. 11, no. 2, pp. 178, 2023, doi: 10.3390/machines11020178.
D. Q. Truong, and K. K. Ahn, “Force control for hydraulic load simulator using self tuning grey predictor fuzzy PID”, Mechatronics , vol. 19, no. 2, pp. 233-246, 2009, doi: 10.1016/j.mechatronics.2008.07.007.
W. Wu, G. Gong, Y. Chen, and X. Zhou, “Performance Analysis of Electro-Hydraulic Thrust System of TBM Based on Fuzzy PID Controller”. Energies, vol. 15, no. 3, pp. 959, 2022, doi: 10.3390/en15030959.
Ş. Çetin, and A. V. Akkaya,“Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system”, Nonlinear Dynamics, vol. 61, pp. 465-476, August 2010, doi: 10.1007/s11071-010-9662.
W. Y. Wang, I. H. Li, M. C. Chen, S. F. Su and S. B. Hsu, "Dynamic Slip-Ratio Estimation and Control of Antilock Braking Systems Using an Observer-Based Direct Adaptive Fuzzy–Neural Controller," IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 1746-1756, 2009, doi: 10.1109/TIE.2008.2009439.
C. Wang, Z. Jiao, S. Wu, and Y. Shang, “A practical nonlinear robust control approach of electro-hydraulic load simulator”, Chinese Journal of Aeronautics, vol. 7, no. 3, pp. 735-744, June 2014, doi: 10.1016/j.cja.2014.04.011.
Z. Wan, Y. Fu, C. Liu, and L. Yue, “Sliding Mode Control Based on High Gain Observer for Electro-Hydraulic Servo System”, Journal of Electrical and Computer Engineering, 2023, doi: 10.1155/2023/7932117.
Y. Wang, J. Zhao, H. Zhang, and H. Wang, “Robust output feedback control for electro-hydraulic servo system with error constraint based on high-order sliding mode observer”, Transactions of the Institute of Measurement and Control, 01423312221146225, 2023, doi: 10.1177/01423312221146225.
M. H. Nguyen, H. V. Dao, and K. K. Ahn, “Extended sliding mode observer‐based high‐accuracy motion control for uncertain electro‐hydraulic systems”, International Journal of Robust and Nonlinear Control, vol. 33, no. 2, pp. 1351-1370, 2023, doi: 10.1002/rnc.6421.
H. M. Chen, J. C. Renn, and J. P. Su, ”Sliding mode control with varying boundary layers for an electro-hydraulic position servo system”, The International Journal of Advanced Manufacturing Technology, pp.117-123,July 2005.
R.M. Davies, J. Watton, “Intelligent control of an electrohydraulic motor drive system”, Mechatronics, vol. 5, no. 5, pp. 527-540, August 1995, doi: 10.1016/0957-4158(95)00024-Y.
C. Guan, S. Pan, “Adaptive sliding mode control of servo electro-hydraulic. system with nonlinear unknown parameters”, Control Engineering Practice, pp. 1275-1284, November 2008, doi: 10.1016/j.conengprac.2008.02.002.
L. Xinliang; J. Shan; Z. Jing; X. Wang, "Adaptive sliding mode position control of electro-hydraulic servo system with single-rod actuators," Robotic and .Sensors Environments (ROSE), 2013 IEEE International Symposiu, pp.220-225,2013, doi: 10.1109/ROSE.2013.6698446.
H. Khodadadi, A.K. Sedigh, M. Ataei, M.R.J. Motlagh, and A. Hekmatnia, “Nonlinear analysis of the contour boundary irregularity of skin lesion using Lyapunov exponent and KS entropy”, Journal of Medical and Biological Engineering, vol. 37, pp.409-419, 2017, doi: 10.1007/s40846-017-0235-3.
H. Khodadadi, A.K. Sedigh, M. Ataei, and M.R.J. Motlagh, “Applying a modified version of Lyapunov exponent for cancer diagnosis in biomedical images: the case of breast mammograms”, Multidimensional Systems and Signal Processing, vol. 29, pp.19-33, 2018, doi: 10.1007/s11045-016-0446-8.
S. Heidarpoor, M. Tabatabaei, and H. Khodadadi, “Speed control of a DC motor using a fractional order sliding mode controller”, IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1-4, 2017, doi: 10.1109/EEEIC.2017.7977822.
M. Arab Zade, and H. Khodadadi, “Fuzzy controller design for breast cancer treatment based on fractal dimension using breast thermograms”, IET systems biology, vol. 13, no. 1, pp.1-7, 2019, doi: 10.1049/iet-syb.2018.5020
_||_